Recent advances in alloying anode materials for sodium-ion batteries: material design and prospects

Ata-ur Rehman , Sanum Saleem , Shahid Ali , Syed Mustansar Abbas , Minsu Choi , Wonchang Choi

Energy Materials ›› 2024, Vol. 4 ›› Issue (6) : 400068

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (6) :400068 DOI: 10.20517/energymater.2024.06
Mini Review

Recent advances in alloying anode materials for sodium-ion batteries: material design and prospects

Author information +
History +
PDF

Abstract

Sodium-ion batteries (SIBs) are close to commercialization. Although alloying anodes have potential use in next-generation SIB anodes, their limitations of low capacities and colossal volume expansions must be resolved. Traditional approaches involving structural and compositional tunings have not been able to break these lofty barriers. This review is devoted to recent progress in research on alloy-based SIB anodes comprising Sn, Sb, P, Ge, and Si. The current level of understanding, challenges, modifications, optimizations employed up to date, and shortfalls faced by alloying anodes are also described. A detailed future outlook is proposed, focusing on advanced nanomaterial tailoring methods and component modifications in SIB fabrication. Utilizing the latest state-of-the-art characterization techniques, including ex-situ and operando characterization tools, can help us better understand the (de)sodiation mechanism and accompanying capacity fading pathways to pave the way for next-generation SIBs with alloying anode materials.

Keywords

Alloying / anodes / sodium-ion batteries / volume expansion / optimizations

Cite this article

Download citation ▾
Ata-ur Rehman, Sanum Saleem, Shahid Ali, Syed Mustansar Abbas, Minsu Choi, Wonchang Choi. Recent advances in alloying anode materials for sodium-ion batteries: material design and prospects. Energy Materials, 2024, 4(6): 400068 DOI:10.20517/energymater.2024.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berry C.The paradox of green growth: challenges and opportunities in decarbonizing the lithium-ion supply chain. In: Kalantzakos S, editor. Critical minerals, the climate crisis and the tech imperium. Cham: Springer Nature Switzerland; 2023. pp. 107-23.

[2]

Uslu S.The impact of COVID-19 on global energy security and energy geopolitics. In: Akıllı E, Gunes B, editors. World politics in the age of uncertainty. Cham: Springer Nature Switzerland; 2023. pp. 219-33.

[3]

Singh AN,Meena A.Unleashing the potential of sodium-ion batteries: current state and future directions for sustainable energy storage.Adv Funct Mater2023;33:2304617

[4]

Zhou G,Cui Y.Formulating energy density for designing practical lithium-sulfur batteries.Nat Energy2022;7:312-9

[5]

Tian H,Feng G.Stable, high-performance, dendrite-free, seawater-based aqueous batteries.Nat Commun2021;12:237 PMCID:PMC7801520

[6]

Wang X,Guo W,Manthiram A.Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries.Mater Today2021;50:259-75

[7]

Wang X,Sawczyk M.Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes.Nat Mater2022;21:1057-65

[8]

Sun Q,Luo T,Liang F.Recent advances in solid-state metal-air batteries.Carbon Energy2023;5:e276

[9]

Zhang L,Wang W.Emerging chemistries and molecular designs for flow batteries.Nat Rev Chem2022;6:524-43

[10]

Olabi AG,Al Makky A.Supercapacitors as next generation energy storage devices: properties and applications.Energy2022;248:123617

[11]

Liang Y.Designing modern aqueous batteries.Nat Rev Mater2023;8:109-22

[12]

Dutta A,Basak M.A comprehensive review on batteries and supercapacitors: development and challenges since their inception.Energy Stor2023;5:e339

[13]

Hao H,Boyce BL,Liu P.Review of multifunctional separators: stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries.Chem Rev2022;122:8053-125

[14]

Huang L,Xu G.Thermal runaway routes of large-format lithium-sulfur pouch cell batteries.Joule2022;6:906-22

[15]

Hong X,Wen L.Nonlithium metal-sulfur batteries: steps toward a leap.Adv Mater2019;31:e1802822

[16]

Yabuuchi N,Dahbi M.Research development on sodium-ion batteries.Chem Rev2014;114:11636-82

[17]

Tan H,Rui X.Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities.Adv Funct Mater2019;29:1808745

[18]

Sadik-zada ER,Scharfenstein M.Sustainable management of lithium and green hydrogen and long-run perspectives of electromobility.Technol Forecast Soc Change2023;186:121992

[19]

Li X,Si Mohammed K.Forecasting the lithium mineral resources prices in China: evidence with facebook prophet (Fb-P) and artificial neural networks (ANN) methods.Resour Policy2023;82:103580

[20]

Frith JT,Ulissi U.A non-academic perspective on the future of lithium-based batteries.Nat Commun2023;14:420 PMCID:PMC9879955

[21]

Vaalma C,Weil M.A cost and resource analysis of sodium-ion batteries.Nat Rev Mater2018;3:1-11

[22]

Nayak PK,Brehm W.From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises.Angew Chem Int Ed2018;57:102-20

[23]

Zhao L,Lai W.Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts.Adv Energy Mater2021;11:2002704

[24]

Song K,Mi L,Chen W.Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries.Small2021;17:e1903194

[25]

Luo W,Bommier C,Ji X.Na-ion battery anodes: materials and electrochemistry.ACC Chem Res2016;49:231-40

[26]

He H,Tang Y,Shao M.Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries.Energy Stor Mater2019;23:233-51

[27]

Patrike A,Shelke V.Research progress and perspective on lithium/sodium metal anodes for next-generation rechargeable batteries.ChemSusChem2022;15:e202200504

[28]

Chen J,Li L,Chua DHC.Optimization strategies toward functional sodium-ion batteries.Energy Environ Mater2023;6:e12633

[29]

Qiao S,Ma M,Dou SX.Advanced anode materials for rechargeable sodium-ion batteries.ACS Nano2023;17:11220-52

[30]

Sarkar S.An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future prospects from material synthesis to battery performance.J Mater Chem A2021;9:5164-96

[31]

Xu G,Abouimrane A.Challenges in developing electrodes, electrolytes, and diagnostics tools to understand and advance sodium-ion batteries.Adv Energy Mater2018;8:1702403

[32]

Hou Z,Jiang M.Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage.ACS Appl Mater Interfaces2023;15:1367-75

[33]

Yang G,Wang S.Carbon-based alloy-type composite anode materials toward sodium-ion batteries.Small2019;15:e1900628

[34]

Wang W,Li Y.Hard carbon derived from different precursors for sodium storage.Chem Asian J2024;19:e202301146

[35]

Veerasubramani GK,Nakate UT.Intrinsically nitrogen-enriched biomass-derived hard carbon with enhanced performance as a sodium-ion battery anode.Energy Fuels2024;38:7368-78

[36]

Tang Y,Peng J.Electrochemical behavior of the biomass hard carbon derived from waste corncob as a sodium-ion battery anode.Energy Fuels2024;38:7389-98

[37]

Zhang G,Xu C.Unraveling the microcrystalline carbon evolution mechanism of biomass-derived hard carbon for sodium-ion batteries.Energy Fuels2024;38:8326-36

[38]

Molaiyan P,Karuppiah D,García-alvarado F.Recent progress in biomass-derived carbon materials for Li-ion and Na-ion batteries - a review.Batteries2023;9:116

[39]

Hu H,Ling W.A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery.Energy Tech2021;9:2000730

[40]

Li N,Liu L.“Self-doping” defect engineering in SnP3@gamma-irradiated hard carbon anode for rechargeable sodium storage.J Colloid Interface Sci2021;592:279-90

[41]

Fang L,Sun W.Conversion-alloying anode materials for sodium ion batteries.Small2021;17:e2101137

[42]

Li X,Hu Z.Improving the initial coulombic efficiency of sodium-storage antimony anodes via electrochemically alloying bismuth.ACS Appl Mater Interfaces2023;15:45926-37

[43]

Zhang H,Passerini S.Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials.Adv Energy Mater2018;8:1702582

[44]

Zhao S,Yang J,Sun B.Nanoengineering of advanced carbon materials for sodium-ion batteries.Small2021;17:e2007431

[45]

Lu X,He Y.Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity.Chem Mater2016;28:1236-42

[46]

Chen Y,Guo Z.Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery.J Power Sources2023;557:232534

[47]

Tang Z,Wang H.Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery.Nat Commun2023;14:6024 PMCID:PMC10533848

[48]

Perveen T,Shahzad N,Ahmad A.Prospects in anode materials for sodium ion batteries - a review.Renew Sust Energy Rev2020;119:109549

[49]

Xiao B,Li X.Hard carbon as sodium-ion battery anodes: progress and challenges.ChemSusChem2019;12:133-44

[50]

Fang S,Passerini S.Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries*. In: Nanda J, Augustyn V, editors. Transition metal oxides for electrochemical energy storage. Wiley; 2022. pp. 55-99.

[51]

Lim YV,Yang HY.Recent tactics and advances in the application of metal sulfides as high-performance anode materials for rechargeable sodium-ion batteries.Adv Funct Mater2021;31:2006761

[52]

Hao Z,Yang Z,Chou S.Developing high-performance metal selenides for sodium-ion batteries.Adv Funct Mater2022;32:2208093

[53]

Fan H,Sun H.Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries.Mater Horiz2022;9:524-46

[54]

Zhang W,Wang Y.Strategies to improve the performance of phosphide anodes in sodium-ion batteries.Nano Energy2021;90:106475

[55]

Li G,Xiang B.Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries.Energy Mater2022;2:200020

[56]

Shao R,Wang L.Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a comparison with lithium-ion batteries.Angew Chem Int Ed2024;136:e202320183

[57]

Chen Z,Sun Z.Enhanced fast-charging and longevity in sodium-ion batteries through nitrogen-doped carbon frameworks encasing flower-like bismuth microspheres.Adv Energy Mater2024;14:2400132

[58]

Yao Q,Liu K.Bi nanospheres embedded in N-doped carbon nanowires facilitate ultrafast and ultrastable sodium storage.Adv Sci2024;11:e2401730

[59]

Li W,Wei Y.Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage.J Mater Chem A2017;5:4413-20

[60]

Li X,Zhao Y,Wang P.Reaction mechanisms, recent progress and future prospects of tin selenide-based composites for alkali-metal-ion batteries.Compos Part B Eng2022;242:110045

[61]

Wu X,Hu R,Yu Y.Tin-based anode materials for stable sodium storage: progress and perspective.Adv Mater2022;34:e2106895

[62]

Zheng C,Li R.Construction of robust solid-electrolyte interphase via electrode additive for high-performance Sn-based anodes of sodium-ion batteries.Energy Stor Mater2024;67:103334

[63]

Huang J,Du X.Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries.Energy Environ Sci2019;12:1550-7

[64]

Duan YK,Zhang SC.Stannate-based materials as anodes in lithium-ion and sodium-ion batteries: a review.Molecules2023;28:5037 PMCID:PMC10343910

[65]

Tian Z,Liu G.Electrolyte solvation structure design for sodium ion batteries.Adv Sci2022;9:e2201207 PMCID:PMC9353483

[66]

Huang Y,Li L,Wu F.Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application.Adv Mater2019;31:e1808393

[67]

Mou H,Miao C,Yu L.Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review.Front Chem2020;8:141 PMCID:PMC7096543

[68]

Liang J,Xili D.Research progress on tin-based anode materials for sodium ion batteries.Rare Met2020;39:1005-18

[69]

Sadan MK,Kim C.Ultra-long cycle life of flexible Sn anode using DME electrolyte.J Alloys Compd2021;871:159549

[70]

Daali A,Zhao C.In situ microscopy and spectroscopy characterization of microsized Sn anode for sodium-ion batteries.Nano Energy2023;115:108753

[71]

Zheng C,Yao Q.Electrostatic shielding boosts electrochemical performance of alloy-type anode materials of sodium-ion batteries.Angew Chem Int Ed2023;62:e202214258

[72]

Yao Q,Zheng C.Intermolecular cross-linking reinforces polymer binders for durable alloy-type anode materials of sodium-ion batteries.Adv Energy Mater2023;13:2202939

[73]

Shen H,Man Q.Chemical prelithiation/presodiation strategies toward controllable and scalable synthesis of microsized nanoporous tin at room temperature for high-energy sodium-ion batteries.Adv Funct Mater2024;34:2309834

[74]

Ying H.Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries.Adv Sci2017;4:1700298 PMCID:PMC5700643

[75]

Yang J,Gao H.A high-performance alloy-based anode enabled by surface and interface engineering for wide-temperature sodium-ion batteries.Adv Energy Mater2023;13:2300351

[76]

Zhang S,Wang M,Li Z.SnO2 nanoparticles confined by N-doped and CNTs-modified carbon fibers as superior anode material for sodium-ion battery.Solid State Ionics2018;323:105-11

[77]

Ma D,Mi H.Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries.Angew Chem Int Ed2018;57:8901-5

[78]

Fan L,Xiong D.Nitrogen-doping of graphene enhancing sodium storage of SnO2 anode.J Electroanal Chem2019;833:340-8

[79]

Wang Y,Zhao C,Jia M.1D ultrafine SnO2 nanorods anchored on 3D graphene aerogels with hierarchical porous structures for high-performance lithium/sodium storage.J Colloid Interface Sci2018;532:352-62

[80]

Demir E,Arie AA.Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries.J Alloys Compd2019;788:1093-102

[81]

Choi IY,Lim WG.Amorphous Tin oxide nanohelix structure based electrode for highly reversible Na-ion batteries.ACS Nano2019;13:6513-21

[82]

Han B,Gao D.Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage.J Power Sources2020;449:227564

[83]

Narsimulu D,Chandra Sekhar S,Su Yu J.Three-dimensional porous SnO2/carbon cloth electrodes for high-performance lithium- and sodium-ion batteries.Appl Surf Sci2021;538:148033

[84]

Chen Y,Geng M.SnO2/MXene nanoparticles as a superior high-rate and cycling-stable anode for sodium ion batteries.Mater Lett2021;304:130704

[85]

Wu YQ,Yang Y.SnS2/Co3S4 hollow nanocubes anchored on S-doped graphene for ultrafast and stable Na-ion storage.Small2019;15:e1903873

[86]

He X,Kang B.Preparation of SnS2/enteromorpha prolifera derived carbon composite and its performance of sodium-ion batteries.J Phys Chem Solids2021;152:109976

[87]

Ding J,Zhu G.Integrating SnS2 quantum dots with nitrogen-doped Ti3C2Tx MXene nanosheets for robust sodium storage performance.ACS Appl Energy Mater2021;4:846-54

[88]

Jiang Y,Lu S.A novel interlayer-expanded tin disulfide/reduced graphene oxide nanocomposite as anode material for high-performance sodium-ion batteries.J Colloid Interface Sci2022;611:215-23

[89]

Li Z,Xiao M.Three-dimensional 1T-SnS2 wrapped with graphene for sodium-ion battery anodes with highly reversible sodiation/desodiation.Scr Mater2022;211:114500

[90]

Li Q,Cui Y,Zhao Y.Multilayer SnS-SnS2@GO heterostructures nanosheet as anode material for Sodium ion battery with high capacity and stability.J Alloys Compd2023;937:168392

[91]

Yang X,Zhong Q.ZnS/SnS2 heterostructures encapsulated in N-doped carbon nanofibers for high-performance alkali metal-ion batteries.ACS Appl Mater Interfaces2023;15:46881-94

[92]

Huang S,Jia P,Zhang J.N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage.Energy Stor Mater2019;20:225-33

[93]

Ou X,Liang X.Fabrication of SnS2/Mn2SnS4/Carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability.ACS Nano2019;13:3666-76

[94]

Zhang F,Shao M.SnSe2 nanoparticles chemically embedded in a carbon shell for high-rate sodium-ion storage.ACS Appl Mater Interfaces2020;12:2346-53

[95]

Yang W,Yin X,Wang J.SnSe nanosheet array on carbon cloth as a high-capacity anode for sodium-ion batteries.ACS Appl Mater Interfaces2023;15:42811-22

[96]

Liu P,Zhu K,Jiao L.Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage.Adv Energy Mater2020;10:2000741

[97]

Fan T,Li J.Sheet-to-layer structure of SnSe2/MXene composite materials for advanced sodium ion battery anodes.New J Chem2021;45:1944-52

[98]

Wang W,Li L.Constructing a rapid ion and electron migration channels in MoSe2/SnSe2@C 2D heterostructures for high-efficiency sodium-ion half/full batteries.Electrochim Acta2023;449:142239

[99]

Kong Z,Huang M.Yolk-shell tin phosphides composites as superior reversibility and stability anodes for lithium/sodium ion batteries.J Alloys Compd2023;930:167328

[100]

Liu C,Liu J.Theoretical prediction of two-dimensional SnP3 as a promising anode material for Na-ion batteries.ACS Appl Energy Mater2018;1:3850-9

[101]

Kong Z,Shao Y.SnxPy nanoplate/reduced graphene oxide composites as anode materials for lithium-/sodium-ion batteries.ACS Appl Nano Mater2021;4:12335-45

[102]

Pan E,Zhao C.Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries.Appl Surf Sci2019;475:12-9

[103]

Pan E,Zhao C.Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability.ACS Appl Energy Mater2019;2:1756-64

[104]

Zhang J,Li B.Enabling high sodium storage performance of micron-sized Sn4P3 anode via diglyme-derived solid electrolyte interphase.Chem Eng J2020;392:123810

[105]

Ran L,Gentle IR.Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries.ACS Nano2020;14:8826-37

[106]

Fan W,Hui Q.A closed-ended MXene armor on hollow Sn4P3 nanospheres for ultrahigh-rate and stable sodium storage.Chem Eng J2023;465:142963

[107]

Fan W,Liu H.Rational design of conductive MXenes-based networks by Sn and Sn4P3 nanoparticles for durable sodium-ion battery.J Power Sources2023;562:232750

[108]

Baggetto L,Sun C,Zawodzinski TA.Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory.J Mater Chem A2013;1:7985-94

[109]

Liu Y,Liu S,Zhang WH.Galvanic replacement synthesis of highly uniform sb nanotubes: reaction mechanism and enhanced sodium storage performance.ACS Nano2019;13:5885-92

[110]

Qian J,Wu L,Ai X.High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.Chem Commun2012;48:7070-2

[111]

Xu X,Gu E,Zhou X.Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage.J Mater Chem A2017;5:13411-20

[112]

Wu C,Chen S.Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage.Energy Stor Mater2018;10:122-9

[113]

Kong B,Peng C.Direct superassemblies of freestanding metal-carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage.J Am Chem Soc2016;138:16533-41

[114]

Park J,Choi M.Sb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode material in sodium-ion batteries.J Power Sources2023;568:232908

[115]

Liu Y,Zhou B.Yolk-shell Sb@Void@Graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries.ACS Nano2023;17:2431-9

[116]

Nieto K,Kale AR,Medina DA.Structural control of electrodeposited sb anodes through solution additives and their influence on electrochemical performance in Na-ion batteries.J Phys Chem C2023;127:12415-27

[117]

Zheng X,Fan J.Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis.Nano Energy2020;77:105123

[118]

Baggetto L,Unocic RR,Veith GM.Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries.J Mater Chem A2013;1:11163-9

[119]

Song Z,Chen Y,Wen Z.In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries.Chem Eng J2023;463:142289

[120]

Shen H,Kang Q.High-performance and sodiation mechanism of a pulse potential-electrodeposited Sb-Zn alloy as an anode for sodium-ion batteries.Appl Surf Sci2023;609:155243

[121]

Chen B,Wu Q,Zhao N.Recent developments of antimony-based anodes for sodium- and potassium-ion batteries.Trans Tianjin Univ2022;28:6-32

[122]

Zhou X,Wang A,Lei Z.Antimony oxides-based anode materials for alkali metal-ion storage.Chemistry2023;29:e202300506

[123]

Deng M,Hong W.Octahedral Sb2O3 as high-performance anode for lithium and sodium storage.Mater Chem Phys2019;223:46-52

[124]

Kim S,Zhang R.High volumetric and gravimetric capacity electrodeposited mesostructured Sb2O3 sodium ion battery anodes.Small2019;15:e1900258

[125]

Ma W,Gao H.A mesoporous antimony-based nanocomposite for advanced sodium ion batteries.Energy Stor Mater2018;13:247-56

[126]

Li D,Cao J,Zhou L.Highly flexible free-standing Sb/Sb2O3 @N-doped carbon nanofiber membranes for sodium ion batteries with excellent stability.Sustain Energy Fuels2020;4:5732-8

[127]

Ye J,Zheng Z.Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries.Int J Hydrogen Energy2020;45:9969-78

[128]

Liao S,Hu H,Zhang M.Carbon-encapsulated Sb6O13 nanoparticles for an efficient and durable sodium-ion battery anode.J Alloys Compd2021;852:156939

[129]

Subramanyan K,Lee Y.Exfoliated graphene oxide@ Sb2O3 octahedrons as alloy-conversion anode for high-performance Na-ion batteries with P2-type Na2/3Ni1/3Mn2/3O2 cathode.Electrochim Acta2023;470:143308

[130]

Lakshmi K,Shaijumon M.Carbon nanotube ‘wired’ octahedral Sb2O3/graphene aerogel as efficient anode material for sodium and lithium ion batteries.J Alloys Compd2021;857:158267

[131]

Deng M,Hong W.Natural stibnite ore (Sb2S3) embedded in sulfur-doped carbon sheets: enhanced electrochemical properties as anode for sodium ions storage.RSC Adv2019;9:15210-6 PMCID:PMC9064274

[132]

Xie J,Yuan Y.Sb2S3 embedded in carbon-silicon oxide nanofibers as high-performance anode materials for lithium-ion and sodium-ion batteries.J Power Sources2019;435:226762

[133]

Huang Y,Jiang Y.Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics.Adv Sci2018;5:1800613 PMCID:PMC6193174

[134]

Cao L,Zhang B,Zhang J.Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries.ACS Nano2020;14:3610-20

[135]

Lin J,Zhang C.Construction of Sb2S3@SnS@C tubular heterostructures as high-performance anode materials for sodium-ion batteries.ACS Sustain Chem Eng2021;9:11280-9

[136]

Zhang H,Jiang W,Pan L.Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties.J Alloys Compd2021;887:161318

[137]

Li D,Liu H.Ti3C2Tx constrained Sb2S3 composite biomass-derived carbon ribbon film achieves stable sodium storage for flexible quasi-solid full-battery.Chem Eng J2023;477:147045

[138]

Zhu M,Yang X,Wang L.3D reduced graphene oxide wrapped MoS2@Sb2S3 heterostructures for high performance sodium-ion batteries.Appl Surf Sci2023;624:157106

[139]

Ou X,Xiong X.A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process.Adv Funct Mater2017;27:1606242

[140]

Li J,Zheng W.Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries.Small2024;20:e2305021

[141]

Nam K.2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes.J Power Sources2019;433:126639

[142]

Wang Y,Zhang K.Cation-exchange construction of ZnSe/Sb2Se3 hollow microspheres coated by nitrogen-doped carbon with enhanced sodium ion storage capability.Nanoscale2020;12:17915-24

[143]

Ihsan-ul-haq M,Wu J.Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage.Carbon2021;171:119-29

[144]

Hu L,Zhao P,Wang B.A new method of synthesis of Sb2Se3/rGO as a high-rate and low-temperature anode for sodium-ion batteries.Mater Adv2022;3:3554-61

[145]

Chong S,Yuan L.Hierarchical encapsulation and rich sp2N assist Sb2Se3-based conversion-alloying anode for long-life sodium- and potassium-ion storage.Energy Environ Mater2023;6:e12458

[146]

Yang J,Lu J.Synergistically boosting reaction kinetics and suppressing polyselenide shuttle effect by Ti3C2Tx/Sb2Se3 film anode in high-performance sodium-ion batteries.J Colloid Interf Sci2023;649:234-44

[147]

Wu Y,Gao P.Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy.Nano Energy2020;77:105299

[148]

Wang Y,Li J,Li L.Recent progress of phosphorus composite anodes for sodium/potassium ion batteries.Energy Stor Mater2021;34:436-60

[149]

Dong S,Huang X,He X.Challenges and prospects of phosphorus-based anode materials for secondary batteries.Batteries Supercaps2023;6:e202300265

[150]

Liu S,Bian X.Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries.ACS Nano2018;12:7380-7

[151]

Hu Y,Jiao X,Dai X.Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile.Adv Funct Mater2018;28:1801010

[152]

Capone I,Naylor AJ,Pasta M.Effect of the particle-size distribution on the electrochemical performance of a red phosphorus-carbon composite anode for sodium-ion batteries.Energy Fuels2019;33:4651-8 PMCID:PMC7011731

[153]

Xiao W,Banis MN.Unveiling the interfacial instability of the phosphorus/carbon anode for sodium-ion batteries.ACS Appl Mater Interf2019;11:30763-73

[154]

Liu W,Yu X.Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries.ACS Nano2020;14:974-84

[155]

Fang K,Xiang X.Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design.Nano Energy2020;69:104451

[156]

Jin H,Wu W.Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries.Nano Energy2020;70:104569

[157]

Liu Y,Jian C.Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus.Nat Commun2020;11:2520 PMCID:PMC7239945

[158]

Subramaniyam CM,Li J,Hamedi MM.Additive-free red phosphorus/Ti3C2Tx MXene nanocomposite anodes for metal-ion batteries.Energy Adv2022;1:999-1008

[159]

Zhu Z,Liu B.Hierarchical ion/electron networks enable efficient red phosphorus anode with high mass loading for sodium ion batteries.Adv Funct Mater2022;32:2110444

[160]

Kaur H,Gabbett C.Amorphous 2D-nanoplatelets of red phosphorus obtained by liquid-phase exfoliation yield high areal capacity Na-ion battery anodes.Adv Energy Mater2023;13:2203013

[161]

Li Z.Recent developments of phosphorus-based anodes for sodium ion batteries.J Mater Chem A2018;6:24013-30

[162]

Chang G,Dong L.A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries.J Mater Chem A2020;8:4996-5048

[163]

Zhou J,Ullah S.Phosphorus-based composites as anode materials for advanced alkali metal ion batteries.Adv Funct Mater2020;30:2004648

[164]

Shen H,Zheng X.One-step electrochemical synthesis and optimization of Sb-Co-P alloy anode for sodium ion battery.Electrochim Acta2023;438:141529

[165]

Zhang N,Zhao J,Ding X.Mass produced Sb/P@C composite nanospheres for advanced sodium-ions battery anodes.Electrochim Acta2023;439:141602

[166]

Jung SC,Choi JW.Atom-level understanding of the sodiation process in silicon anode material.J Phys Chem Lett2014;5:1283-8

[167]

Liu C,Meng C,Li B.Amorphous germanium nanomaterials as high-performance anode for lithium and sodium-ion batteries.Adv Mater Technol2023;8:2201817

[168]

Li M,Ge X.Enhanced electrochemical properties of carbon coated Zn2GeO4 micron-rods as anode materials for sodium-ion batteries.Chem Eng J2018;331:203-10

[169]

Tseng K,Chang W.Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-ion and sodium-ion battery anodes.Chem Mater2018;30:4440-7

[170]

Shen H,Yang B.Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries.J Power Sources2019;433:126682

[171]

Li W,Liao J.Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries.Energy Stor Mater2019;20:380-7

[172]

Sung G,Choi J.Germanium telluride: layered high-performance anode for sodium-ion batteries.Electrochim Acta2020;331:135393

[173]

Wang C,Ma X.Isotropy-induced stress relaxation and strong-tolerance for high-rate and long-duration sodium storage by amorphous structure engineering.Adv Funct Mater2022;32:2204687

[174]

Yanilmaz M,Kim J.Centrifugally spun binder-free n, s-doped Ge@PCNF anodes for Li-ion and Na-ion batteries.ACS Omega2023;8:16987-95 PMCID:PMC10193401

[175]

Li Y,Li Y.Multilevel gradient-ordered silicon anode with unprecedented sodium storage.Adv Mater2024;36:e2310270

[176]

Arrieta U,Arcelus O.First-principles study of sodium intercalation in crystalline NaxSi24 (0 ≤ x ≤ 4) as anode material for Na-ion batteries.Sci Rep2017;7:5350 PMCID:PMC5509687

[177]

Majid A,Ud-din Khan S.First principles study of SiC as the anode in sodium ion batteries.New J Chem2020;44:8910-21

[178]

Zhao Q,Hu X.A Si/C nanocomposite anode by ball milling for highly reversible sodium storage.Electrochem Commun2016;70:8-12

[179]

Han Y,Xu T.An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries.Nanoscale2018;10:3153-8

[180]

Jangid MK,Sonia FJ,Mukhopadhyay A.Feasibility of reversible electrochemical Na-storage and cyclic stability of amorphous silicon and silicon-graphene film electrodes.J Electrochem Soc2017;164:A2559-65

[181]

Kempf A,Graczyk-zajac M,Riedel R.Tin-functionalized silicon oxycarbide as a stable, high-capacity anode material for Na-ion batteries.Open Ceram2023;15:100388

[182]

Zhang Y,Li XT.Porous amorphous silicon hollow nanoboxes coated with reduced graphene oxide as stable anodes for sodium-ion batteries.ACS Omega2022;7:30208-14 PMCID:PMC9434769

[183]

Zeng L,Han L.Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries.Chemistry2018;24:4841-8

[184]

Kalisvaart WP,Luber EJ.Sb-Si alloys and multilayers for sodium-ion battery anodes.ACS Appl Energy Mater2019;2:2205-13

[185]

Gong H,Liu L.Self-source silicon embedded in 2D biomass-based carbon sheet as anode material for sodium ion battery.Appl Surf Sci2022;586:152759

[186]

Nazarian-samani M,Haghighat-shishavan S.Predelithiation-driven ultrastable Na-ion battery performance using Si,P-rich ternary M-Si-P anodes.Energy Stor Mater2022;49:421-32

[187]

Din MA, Li C, Zhang L, Han C, Li B. Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries.Mater Today Phys2021;21:100486

[188]

Sun J,Oh JAS,Lu L.Recent advances of bismuth based anode materials for sodium-ion batteries.Mater Technol2018;33:563-73

[189]

Park B,Han D.Multiscale hierarchical design of bismuth-carbon anodes for ultrafast-charging sodium-ion full battery.Appl Surf Sci2023;614:156188

[190]

Hu C,Ma G.Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries.Electrochim Acta2021;365:137379

[191]

Xue P,Fang Z.Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries.Nano Lett2019;19:1998-2004

[192]

Yin H,Yu X.Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries.Mater Chem Front2017;1:1615-21

[193]

Liu R,He X.Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability.eScience2023;3:100138

[194]

Lin J,Zhang Y,Zhang Y.Selenide-doped bismuth sulfides (Bi2S3-xSex) and their hierarchical heterostructure with ReS2 for sodium/potassium-ion batteries.J Colloid Interf Sci2023;645:654-62

[195]

Pang S,Fan C.Insights into the sodium storage mechanism of Bi2Te3 nanosheets as superior anodes for sodium-ion batteries.Nanoscale2022;14:1755-66

[196]

Meija R,Rublova Y.Electrochemical properties of bismuth chalcogenide/MXene/CNT heterostructures for application in Na-ion batteries.Sustain Mater Technol2023;38:e00768

[197]

Wang Y,Li F.Rational design of bismuth metal anodes for sodium-/potassium-ion batteries: recent advances and perspectives.Batteries2023;9:440

[198]

Li X,Savilov SV.Materials based on antimony and bismuth for sodium storage.Chemistry2018;24:13719-27

[199]

Ellis LD,Hatchard TD.In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells.J Electrochem Soc2014;161:A416-21

[200]

Sottmann J,Vajeeston P.How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying.Chem Mater2016;28:2750-6

[201]

Zhang X,Lin J.Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries.Small2023;19:e2302071

[202]

Liang Y,Zhang Z.Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage.Adv Mater2022;34:e2202673

[203]

Liu Y,Wang H.Binder-free 3D hierarchical Bi Nanosheet/CNTs arrays anode for full sodium-ion battery with high voltage above 4 V.J Power Sources2022;540:231639

[204]

Pu B,Bai J.Iodine-ion-assisted galvanic replacement synthesis of bismuth nanotubes for ultrafast and ultrastable sodium storage.ACS Nano2022;16:18746-56

[205]

Zhang W,Li L.Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries.Chem Eng J2018;348:599-607

[206]

Li R,Zhang P.Accelerating ion transport via in-situ formation of built-in electric field for fast charging sodium-ion batteries.Chem Eng J2022;450:138019

[207]

Chen Y,Guo X.Bimetallic sulfide SnS2/FeS2 nanosheets as high-performance anode materials for sodium-ion batteries.ACS Appl Mater Interf2021;13:39248-56

[208]

Zhou J,Zhang L.A novel and fast method to prepare a Cu-supported α-Sb2S3@CuSbS2 binder-free electrode for sodium-ion batteries.RSC Adv2020;10:29567-74 PMCID:PMC9056002

[209]

Li X,Hu Z,Yin H.Electrochemically converting Sb2S3/CNTs to Sb/CNTs composite anodes for sodium-ion batteries.Int J Hydrogen Energy2021;46:17071-83

[210]

Li D,Li J.A bioconfined synthesis strategy of Sb2S3@N-doped carbon ribbons for boosting ultralong-life sodium storage.J Power Sources2022;546:231875

[211]

Zhou J,Dou Q.Enhancing sodium-ion batteries performance enabled by three-dimensional nanoflower Sb2S3@rGO anode material.Mater Chem Phys2023;303:127837

[212]

Li K,Hu J.Construction of hollow core-shell Sb2S3/S@S-doped C composite based on complexation reaction for high performance anode of sodium-ion batteries.Appl Surf Sci2023;613:156111

[213]

Dong C,Zhou Y.Construction of ZnS/Sb2S3 heterojunction as an ion-transport booster toward high-performance sodium storage.Adv Funct Mater2023;33:2211864

[214]

Liu W,Ju S.Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries.ACS Nano2021;15:5679-88

[215]

Liu X,Daali A.Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion batteries.ACS Energy Lett2021;6:547-56

[216]

Ma X,Li X,Xiong X.Red@Black phosphorus core-shell heterostructure with superior air stability for high-rate and durable sodium-ion battery.Mater Today2022;59:36-45

[217]

Song J,Fang K,Wang R.NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation.J Colloid Interf Sci2023;630:443-52

[218]

Saddique J,Wu T.Enhanced silicon diphosphide-carbon composite anode for long-cycle, high-efficient sodium ion batteries.ACS Appl Energy Mater2019;2:2223-9

[219]

Ababaikeri R,Wang X.Scalable fabrication of Bi@N-doped carbon as anodes for sodium/potassium-ion batteries with enhanced electrochemical performances.J Alloys Compd2023;935:168207

[220]

He B,Hou Z,Yin H.3D hierarchical self-supporting Bi2Se3-based anode for high-performance lithium/sodium-ion batteries.J Colloid Interf Sci2023;650:857-64

[221]

Wang M,Cheng X,Wang X.Graphene-encapsulated nitrogen-doped carbon@Bi enables rapid, ultrahigh and durable sodium storage.Batteries Supercaps2023;6:e202300055

[222]

Chen J,Xiao J.A stress self-adaptive bimetallic stellar nanosphere for high-energy sodium-ion batteries.Adv Funct Mater2024;34:2307959

[223]

Wei S,Ma Z,Li Y.Novel bismuth nanoflowers encapsulated in N-doped carbon frameworks as superb composite anodes for high-performance sodium-ion batteries.Small2023;19:e2304265

[224]

Wang J,Zhou Y.Sea cucumber-inspired multi-phase metal sulfides with hierarchical structure towards energy storage with promoted safety.J Energy Stor2024;76:109743

[225]

Hu K,Zheng C.Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for sodium-ion batteries.RSC Adv2023;13:25552-60 PMCID:PMC10450392

[226]

Ma D,Hu A.Si-based anode materials for Li-ion batteries: a mini review.Nanomicro Lett2014;6:347-58 PMCID:PMC6223966

[227]

Pan Q,Zheng F.Facile synthesis of M-Sb (M = Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as high performance anode materials for lithium ion batteries.Chem Eng J2018;348:653-60

[228]

Guo S,Wang L,Yu Y.Architectural engineering achieves high-performance alloying anodes for lithium and sodium ion batteries.Small2021;17:e2005248

[229]

Ma D,Zhang P.Oxygen vacancy engineering in tin(IV) oxide based anode materials toward advanced sodium-ion batteries.ChemSusChem2018;11:3693-703

[230]

Liang S,Zhu J,Müller-buschbaum P.A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes.Small Methods2020;4:2000218

[231]

Wang X,Huang L.Superior electrochemical performance of Sb-Bi alloy for sodium storage: understanding from alloying element effects and new cause of capacity attenuation.J Power Sources2022;520:230826

[232]

Zheng Y,Shang J,Lei C.High-performance sodium-ion batteries enabled by 3D nanoflowers comprised of ternary Sn-based dichalcogenides embedded in nitrogen and sulfur dual-doped carbon.Small2023;19:e2303746

[233]

Gao H,Guo Z.Dealloying-induced dual-scale nanoporous indium-antimony anode for sodium/potassium ion batteries.J Energy Chem2022;75:154-63

[234]

Fu R,Wang M.In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium storage in ternary metal sulfide anode.ACS Nano2023;17:12483-98

[235]

Wu J,Chen Y.Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations.Nano Energy2021;89:106489

[236]

Peled E.Review - SEI: past, present and future.J Electrochem Soc2017;164:A1703-19

[237]

Yu F,Zhang G,Wang W.Electrode engineering by atomic layer deposition for sodium-ion batteries: from traditional to advanced batteries.Adv Funct Mater2020;30:1906890

[238]

Yadav P,Patrike A.Sodium-based batteries: development, commercialization journey and new emerging chemistries.Oxford Open Mater Sci2023;3:itac019

[239]

Eddie Spence, Annie Lee; Bloomberg. Tesla rival BYD and other battery giants are betting on sodium for EVs and energy storage - and challenging the dominance of lithium-ion. Available from: https://fortune.com/2023/11/26/battery-giants-sodium-bet-electric-vehicles-energy-storage-lithium-ion/ [Last accessed on 1 Jul 2024]

[240]

Gebert F,Gorkin R,Dou S.Polymer electrolytes for sodium-ion batteries.Energy Stor Mater2021;36:10-30

[241]

Li Y,Li Y.Ether-based electrolytes for sodium ion batteries.Chem Soc Rev2022;51:4484-536

[242]

Sirengo K,Brennan B.Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway.J Energy Chem2023;81:321-38

[243]

Westman K,Jankowski P.Diglyme based electrolytes for sodium-ion batteries.ACS Appl Energy Mater2018;1:2671-80

[244]

Kulova TL.Electrode/electrolyte interphases of sodium-ion batteries.Energies2022;15:8615

[245]

Usui H,Fujiwara K.Charge-discharge properties of a Sn4P3 negative electrode in ionic liquid electrolyte for Na-ion batteries.ACS Energy Lett2017;2:1139-43

[246]

Domingues LS,Martins VL.Ionic liquids as potential electrolytes for sodium-ion batteries: an overview.Phys Chem Chem Phys2023;25:12650-67

[247]

Ahmad H,Butt A,Iftikhar FJ.Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries.J Power Sources2023;581:233518

[248]

Gandi S,Sripada Panda SS.Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: a review.J Power Sources2022;521:230930

[249]

Tripathi AM,Hwang BJ.In situ analytical techniques for battery interface analysis.Chem Soc Rev2018;47:736-851

[250]

Zhou L,Wahyudi W.Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries.ACS Energy Lett2020;5:766-76

[251]

Zhang J,Song K.Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells.Cell Rep Phys Sci2022;3:100868

[252]

Li Z,Wu S.Designing advanced polymeric binders for high-performance rechargeable sodium batteries.Adv Funct Mater2024;34:2307261

[253]

Chen H,Liu G.Polymeric binders in modern metal-ion batteries. In: Zhang S, Lu J, editors. Functional polymers for metal-ion batteries. New York: Wiley; 2023. pp. 61-117.

[254]

Li RR,He XX.Binders for sodium-ion batteries: progress, challenges and strategies.Chem Commun2021;57:12406-16

[255]

Bresser D,Moretti A,Passerini S.Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers.Energy Environ Sci2018;11:3096-127

[256]

Rasheed T,Naveed A.Biopolymer based materials as alternative greener binders for sustainable electrochemical energy storage applications.ChemistrySelect2022;7:e202203202

[257]

Feng J,Li D,Hou F.Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries.Prog Nat Sci2018;28:205-11

[258]

Patra J,Li C.A water-soluble NaCMC/NaPAA binder for exceptional improvement of sodium-ion batteries with an SnO2-ordered mesoporous carbon anode.ChemSusChem2018;11:3923-31

[259]

Sarkar S,Zhao Y.Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: structural design, charge storage mechanisms, key challenges and perspectives.Nano Res2021;14:3690-723

[260]

Zhang Y,Xu W.A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries.Adv Sci2019;6:1900162

[261]

Choi Y.Continuous/reversible phase transition behaviors and their effect on the hysteresis energy loss of the anodes in Na-ion batteries.Electrochim Acta2019;328:135106

[262]

Huang Z,Liu H.Long cycle life and high-rate sodium metal batteries enabled by an active/inactive Co-Sn alloy interface.Adv Funct Mater2024;34:2302062

[263]

Sarkar S.Synergistic voltage and electrolyte mediation improves sodiation kinetics in µ-Sn alloy-anodes.Energy Stor Mater2021;43:305-16

[264]

Wang XZ,Qin Y.Fast Na+ kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium oxide cathodes.Adv Mater2024;36:e2312300

[265]

Liu G,Shi X.2D-layer-structure Bi to quasi-1D-structure NiBi3: structural dimensionality reduction to superior sodium and potassium ion storage.Adv Mater2023;35:e2305551

[266]

Feng D,Xu H.High performance sodium-ion anodes based on FeSb2S4/Sb embedded within porous reduced graphene oxide/carbon nanotubes matrix.J Alloys Compd2023;931:167576

[267]

Li C,Zhao M,Jiang Q.Sodium storage performance of ultrasmall SnSb nanoparticles.Chem Eng J2021;420:129617

[268]

Kang J,Choi S,Park S.Nonporous oxide-terminated multicomponent bulk anode enabling energy-dense sodium-ion batteries.ACS Appl Mater Interf2023;15:26576-84

[269]

Gandharapu P,Tripathi R,Poswal HK.Facile and scalable development of high-performance carbon-free Tin-based anodes for sodium-ion batteries.ACS Appl Mater Interf2023;15:37504-16

[270]

Cheng X,Peng S.In-situ alloy-modified sodiophilic current collectors for anode-less sodium metal batteries.Batteries2023;9:408

[271]

Patel PC,Mishra PK,Kashyap J.Fe-as intermetallic alloys: a way out for sodium-ion batteries.Energy Fuels2023;37:16062-71

[272]

Li H,Li X.Pomegranate-like Sn-Ni nanoalloys@N-doped carbon nanocomposites as high-performance anode materials for Li-ion and Na-ion batteries.Appl Surf Sci2023;611:155672

[273]

Li W,Huang S.Synergetic Sn incorporation-Zn substitution in copper-based sulfides enabling superior Na-ion storage.Adv Mater2024;36:e2305957

[274]

Ye W,Xiong D.Mesoporous C-covered Sn/SnO2-Ni nanoalloy particles as anode materials for high-performance lithium/sodium-ion batteries.Electrochim Acta2023;471:143401

[275]

Sohan A,Narayanan TN.Tin antimony alloy based reduced graphene oxide composite for fast charging sodium-ion batteries.J Energy Stor2023;74:109312

[276]

Chen X,He P.High-capacity Sb2SnO5 with controlled Sb/Sn phase modulation as advanced anode material for sodium-ion batteries.J Alloys Compd2023;938:168472

[277]

Meng F,Zhou H.Controllable fabrication of Sn/Sb nanodomains improved Sb2SnO5 anodes for sodium ion batteries.ChemistrySelect2023;8:e202302417

[278]

Bhar M,Bhattacharjee U,Rao TN.Designing a freestanding electrode of intermetallic Ni-Sn alloy deposit as an anode for lithium-ion and sodium-ion batteries.J Electrochem Soc2023;170:040501

[279]

Priyanka P,Soundarya GG,Dutta DP.Effect of pulverisation on sulfide and tin antimonide anodes for sodium-ion batteries.Front Energy Res2023;11:1266653

[280]

Hou H,Yang Y.Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries.J Mater Chem A2015;3:2971-7

[281]

Kebede MA.Tin oxide-based anodes for both lithium-ion and sodium-ion batteries.Curr Opin Electrochem2020;21:182-7

[282]

Li Z,Liu Q.Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries.J Mater Chem A2020;8:19113-32

[283]

Sang J,Liu K.Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient high-capacity anode for sodium-ion batteries.Adv Funct Mater2023;33:2211640

[284]

Liu M,Sun Z.Dual mechanism for sodium based energy storage.Small2023;19:e2206922

[285]

Ru J,Chen B.Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries.Angew Chem Int Ed2020;59:14621-7

[286]

Xu S,Yang D.Promising cathode materials for sodium-ion batteries from lab to application.ACS Cent Sci2023;9:2012-35 PMCID:PMC10683485

[287]

Dai Z,Tan HT.Advanced cathode materials for sodium-ion batteries: what determines our choices?.Small Methods2017;1:1700098

[288]

Jing WT,Jiang Q.Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries.J Mater Chem A2020;8:2913-33

[289]

Lin K,Zhou Y.Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-structured SIBs: combined theoretical and experimental study.Chem Eng J2023;463:142464

[290]

Li F,Tang K,Zhao Q.Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries.J Appl Electrochem2023;53:9-18

[291]

Oh SM,Jang MW,Hassoun J.An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode.Phys Chem Chem Phys2013;15:3827-33

[292]

Liu M,Shen Y.Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries.J Mater Chem A2021;9:5639-47

[293]

He W,Pathak R.High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries.Chem Eng J2021;414:128638

[294]

Chen S,Sun B,Wang G.Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries.Energy Stor Mater2016;5:180-90

[295]

Liu Y,Jiao L,Chen J.Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries.Adv Funct Mater2015;25:214-20

[296]

Nam DH,Hong KS.Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries.ACS Nano2014;8:11824-35

[297]

Zhu Y,Shao R.Microsized gray Tin as a high-rate and long-life anode material for advanced sodium-ion batteries.Nano Lett2022;22:7976-83

[298]

Wang L,Lei K,Tian S.3D porous Tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries.ChemSusChem2018;11:3376-81

[299]

Chen B,Liang M.NaCl-pinned antimony nanoparticles combined with ion-shuttle-induced graphitized 3D carbon to boost sodium storage.Cell Rep Phys Sci2022;3:100891

[300]

Li X,Niu X,Yu Y.Efficient stress dissipation in well-aligned pyramidal SbSn alloy nanoarrays for robust sodium storage.Adv Funct Mater2021;31:2104798

[301]

Ni J,Sun M.Durian-inspired design of bismuth-antimony alloy arrays for robust sodium storage.ACS Nano2020;14:9117-24

[302]

Zhang R,Guo L.A fast and high-efficiency electrochemical exfoliation strategy towards antimonene/carbon composites for selective lubrication and sodium-ion storage applications.Phys Chem Chem Phys2022;24:4957-65

[303]

Tian W,Huo C.Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries.ACS Nano2018;12:1887-93

[304]

Gao H,Zhang C,Zhang Z.A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries.ACS Nano2018;12:3568-77

[305]

Li W,Gu Q,Liu HK.Three-dimensional electronic network assisted by TiN conductive pillars and chemical adsorption to boost the electrochemical performance of red phosphorus.ACS Nano2020;14:4609-17

[306]

Wu Y,Xu R.Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance.J Mater Chem A2019;7:8581-8

[307]

Liu B,Li L.Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries.ACS Nano2019;13:13513-23

[308]

Liu D,Qu D.Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries.Nano Energy2018;52:1-10

[309]

Zhu L,Fang Y.Se-induced fibrous nano red P with superior conductivity for sodium batteries.Adv Funct Mater2023;33:2302444

[310]

Guo X,Zhang J.Boosting sodium storage in two-dimensional Phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase.ACS Nano2020;14:3651-9

[311]

Sun J,Pasta M.A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries.Nat Nanotechnol2015;10:980-5

[312]

Shuai H,Hong W.Electrochemically exfoliated phosphorene-graphene hybrid for sodium-ion batteries.Small Methods2019;3:1800328

[313]

Liu Y,Zhang A.Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes.ACS Nano2018;12:8323-9

[314]

Yang H,Yao Y,Zhou X.Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes.Adv Funct Mater2019;29:1809195

[315]

Xiong P,Li A.Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries.Adv Mater2019;31:e1904771

[316]

Cheng X,Wei C.Synergistic effect of 1D bismuth nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries.J Mater Chem A2023;11:8081-90

[317]

Guo S,Wang L.Micro-sized porous bulk bismuth caged by carbon for fast charging and ultralong cycling in sodium-ion batteries.Cell Rep Phys Sci2023;4:101463

[318]

Cheng X,Li D.A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage.Adv Funct Mater2021;31:2011264

[319]

Wang C,Li F,Chen J.Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes.Adv Mater2017;29:1702212

[320]

Hou D,Gabriel E.Spatial and temporal analysis of sodium-ion batteries.ACS Energy Lett2021;6:4023-54 PMCID:PMC8593912

[321]

Tang F,Yang C.Synchrotron X-ray tomography for rechargeable battery research: fundamentals, setups and applications.Small Methods2021;5:e2100557

PDF

472

Accesses

0

Citation

Detail

Sections
Recommended

/