Recent progress in MXenes-based lithium-sulfur batteries

Hui Liu , Shitong Sun , Bo Jin

Energy Materials ›› 2024, Vol. 4 ›› Issue (4) : 400053

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (4) :400053 DOI: 10.20517/energymater.2023.99
Article

Recent progress in MXenes-based lithium-sulfur batteries

Author information +
History +
PDF

Abstract

Lithium-sulfur batteries (LSBs) are considered as the potent candidates for next-generation energy storage systems due to their high theoretical energy density. However, some inherent problems, including sulfur insulation, shuttle effect caused by lithium polysulfides, and lithium dendrites, hinder their practical application. Various materials have been studied to address the aforementioned issues. A class of two-dimensional inorganic compounds (MXenes), such as transition metal carbides, nitrides, and carbon nitrides, have recently emerged. In this review, we summarize the characteristics and commonly used preparation methods of MXenes and outline the latest development of MXenes and their composites in LSBs. When utilized as sulfur carriers, modified layers of separators, hosts for lithium metal anodes, and electrolyte additives in LSBs, the diversity of structure, excellent conductivity, and high mechanical strength of MXenes and their composites highlight the competitive advantages. This review provides some ideas for the future development of MXenes in LSBs.

Keywords

MXenes / lithium-sulfur batteries / sulfur hosts / functional separators / lithium metal anodes / electrolytes

Cite this article

Download citation ▾
Hui Liu, Shitong Sun, Bo Jin. Recent progress in MXenes-based lithium-sulfur batteries. Energy Materials, 2024, 4(4): 400053 DOI:10.20517/energymater.2023.99

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M.Building better batteries.Nature2008;451:652-7

[2]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[3]

Peng H,Cheng X.Review on high-loading and high-energy lithium-sulfur batteries.Adv Energy Mater2017;7:1700260

[4]

Huang S,Yang Y,Ye M.Transition metal phosphides: new generation cathode host/separator modifier for Li-S batteries.J Mater Chem A2021;9:7458-80

[5]

Liu B,Xu W.Advancing lithium metal batteries.Joule2018;2:833-45

[6]

Li H,Jin B,Liu HK.Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries.Small2020;16:e1907464

[7]

Dong C,Liu H.Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries.J Mater Sci Technol2022;113:207-16

[8]

Wang Y,Zhang Z,Xiao D.Trifunctional electrolyte additive hexadecyltrioctylammonium iodide for lithium-sulfur batteries with extended cycle life.ACS Appl Mater Interfaces2021;13:16545-57

[9]

Wu DS,Zhou G.Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries.Energy Storage Mater2018;13:241-6

[10]

Seh ZW,Zhang Q.Designing high-energy lithium-sulfur batteries.Chem Soc Rev2016;45:5605-34

[11]

Yin YX,Guo YG.Lithium-sulfur batteries: electrochemistry, materials, and prospects.Angew Chem Int Ed2013;52:13186-200

[12]

Wang D,Zhou G.Carbon-sulfur composites for Li-S batteries: status and prospects.J Mater Chem A2013;1:9382-94

[13]

Chung SH.Current status and future prospects of metal-sulfur batteries.Adv Mater2019;31:e1901125

[14]

Zheng J,Gu M.How to obtain reproducible results for lithium sulfur batteries?.J Electrochem Soc2013;160:A2288-92

[15]

Xu J,Zhang Z.Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium-sulfur full batteries.Energy Storage Mater2022;47:223-34

[16]

Sheng Q,Liu Y.Functional separator with 1T/2H-MoSe2 nanosheets decorated nitrogen and sulfur co-doped mesoporous hollow carbon spheres for high-performance Li-S batteries.Chem Eng J2023;476:146880

[17]

Yao W,Ma L.Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries.Adv Mater2023;35:e2212116

[18]

Li H,Zhao M.Suppressed shuttle via inhibiting the formation of long-chain lithium polysulfides and functional separator for greatly improved lithium-organosulfur batteries performance.Adv Energy Mater2020;10:1902695

[19]

Wu H,Chen X.Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries.Carbon Energy2024;6:e422

[20]

Han SA,Lee J,Kim JH.Metal-organic framework derived porous structures towards lithium rechargeable batteries.EcoMat2023;5:e12283

[21]

Xiao Z,Meng X.MXene-engineered lithium-sulfur batteries.J Mater Chem A2019;7:22730-43

[22]

Deysher G,Hantanasirisakul K.Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals.ACS Nano2020;14:204-17

[23]

Wei Y,Soomro RA,Xu B.Advances in the synthesis of 2D MXenes.Adv Mater2021;33:e2103148

[24]

VahidMohammadi A,Gogotsi Y.The world of two-dimensional carbides and nitrides (MXenes).Science2021;372:eabf1581

[25]

An Y,Shen H,Xiong S.Two-dimensional MXenes for flexible energy storage devices.Energy Environ Sci2023;16:4191-250

[26]

Naguib M,Presser V.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv Mater2011;23:4248-53

[27]

Anasori B,Gogotsi Y.2D metal carbides and nitrides (MXenes) for energy storage.Nat Rev Mater2017;2:16098

[28]

Lai S,Jang SK.Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: -OH, -F and -O).Nanoscale2015;7:19390-6

[29]

Hu T,Zhang H,Hu M.Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study.Phys Chem Chem Phys2015;17:9997-10003

[30]

Khazaei M,Sasaki T.Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides.Adv Funct Mater2013;23:2185-92

[31]

Jayan R,Islam MM.First-principles investigation of elastic and electronic properties of double transition metal carbide MXenes.J Am Ceram Soc2022;105:4400-13

[32]

Azadi SK,Asgharizadeh S.Investigation of the optical and electronic properties of functionalized Ti3C2 Mxene with halid atoms using DFT calculation.Mater Today Commun2023;35:106136

[33]

Zhang Y,Luo K.Theoretical study on the electrical and mechanical properties of MXene multilayer structures through strain regulation.Chem Phys Lett2020;760:137997

[34]

Lipatov A,Lukatskaya MR,Gogotsi Y.Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes.Adv Electron Mater2016;2:1600255

[35]

Zeraati A, Mirkhani SA, Sun P, Naguib M, Braun PV, Sundararaj U. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance.Nanoscale2021;13:3572-80

[36]

Zhang J,Uzun S.Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity.Adv Mater2020;32:e2001093

[37]

Xue N,Han L.Fluorine-free synthesis of ambient-stable delaminated Ti2CTx (MXene).J Mater Chem A2022;10:7960-7

[38]

Mashtalir O,Mochalin VN,Barsoum MW.Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media.J Mater Chem A2014;2:14334-8

[39]

Zhang CJ,Mcevoy N.Oxidation stability of colloidal two-dimensional titanium carbides (MXenes).Chem Mater2017;29:4848-56

[40]

Chae Y,Cho SY.An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene.Nanoscale2019;11:8387-93

[41]

Echols IJ,Kotasthane VS.Oxidative stability of Nbn+1CnTz MXenes.J Phys Chem C2021;125:13990-6

[42]

Lee Y,Kim Y.Oxidation-resistant titanium carbide MXene films.J Mater Chem A2020;8:573-81

[43]

Lee DK,Yun H,Lee JW.CO2-Oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption.ACS Nano2020;14:9744-54

[44]

Borysiuk VN,Gogotsi Y.Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes).Nanotechnology2015;26:265705

[45]

Guo Z,Si C.Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories.Phys Chem Chem Phys2015;17:15348-54

[46]

Chen Y,Yan X.Manipulating the crack path through the surface functional groups of MXenes.Nanoscale2022;14:14169-77

[47]

Pan Y,Zhou Q.Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene).Polym Compos2020;41:210-8

[48]

Wan S,Chen Y.High-strength scalable MXene films through bridging-induced densification.Science2021;374:96-9

[49]

Alhabeb M,Anasori B.Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene).Chem Mater2017;29:7633-44

[50]

Srivastava P,Mizuseki H,Singh AK.Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene.ACS Appl Mater Interfaces2016;8:24256-64

[51]

Mashtalir O,Mochalin VN.Intercalation and delamination of layered carbides and carbonitrides.Nat Commun2013;4:1716

[52]

Maleski K,Gogotsi Y.Dispersions of two-dimensional titanium carbide MXene in organic solvents.Chem Mater2017;29:1632-40

[53]

Jiang G,Chen X.In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries.Chem Eng J2019;373:1309-18

[54]

Li Z,Sun D.Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2.Mater Sci Eng B2015;191:33-40

[55]

Wang K,Xu W,Wang Z.Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets.Ceram Int2016;42:8419-24

[56]

Ghidiu M,Zhao MQ,Barsoum MW.Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.Nature2014;516:78-81

[57]

Ebrahimi M.Optoelectronic properties of Ti3C2Tx MXene transparent conductive electrodes: microwave synthesis of parent MAX phase.Ceram Int2020;46:28114-9

[58]

Li X,Hou Y.Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor.ACS Nano2021;15:14631-42

[59]

Wu M,Hu Q,Zhou A.The synthesis process and thermal stability of V2C MXene.Materials2018;11:2112 PMCID:PMC6266651

[60]

Wang X,Rochard G.A new etching environment (FeF3 /HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water.J Mater Chem A2017;5:22012-23

[61]

Wang B,Liu F,Wang L.Carbon dioxide adsorption of two-dimensional carbide MXenes.J Adv Ceram2018;7:237-45

[62]

Urbankowski P,Makaryan T.Synthesis of two-dimensional titanium nitride Ti4N3 (MXene).Nanoscale2016;8:11385-91

[63]

Khan U,Kong LB.Synthesis of fluorine free MXene through lewis acidic etching for application as electrode of proton supercapacitors.J Alloys Compd2022;926:166903

[64]

Kamysbayev V,Hu H.Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes.Science2020;369:979-83

[65]

Xuan J,Chen Y.Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance.Angew Chem Int Ed2016;128:14789-94

[66]

Li T,Liu Q.Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via Alkali Treatment.Angew Chem Int Ed2018;130:6223-7

[67]

Chen J,Zhou W.Simplified synthesis of fluoride-free Ti3C2Tx via electrochemical etching toward high-performance electrochemical capacitors.ACS Nano2022;16:2461-70

[68]

Pang SY,Yuan S.Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials.J Am Chem Soc2019;141:9610-6

[69]

Wang D,Filatov AS.Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes.Science2023;379:1242-7

[70]

Shi H,Liu Z.Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching.Angew Chem Int Ed2021;133:8771-5 PMCID:PMC8048443

[71]

Ding J,Wang Q,Chen H.An ultrahigh thermal conductive graphene flexible paper.Nanoscale2017;9:16871-8

[72]

Zhu C,Pan H.Ultrafast Li-ion migration in holey-graphene-based composites constructed by a generalized ex situ method towards high capacity energy storage.J Mater Chem A2019;7:4788-96

[73]

Xu H,Siegenthaler J.Review on recent advances in two-dimensional nanomaterials-based cathodes for lithium-sulfur batteries.EcoMat2023;5:e12286

[74]

Chen X,Shan Y,Cui W.Notes in accordions - organized MXene equipped with CeO2 for synergistically adsorbing and catalyzing polysulfides for high-performance lithium-sulfur batteries.J Energy Chem2022;70:502-10

[75]

Liang X,Nazar LF.Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries.Angew Chem Int Ed2015;127:3979-83

[76]

Zhao Y,Liu Z.Stable electrochemical Li plating/stripping behavior by anchoring MXene layers on three-dimensional conductive skeletons.ACS Appl Mater Interfaces2020;12:37967-76

[77]

Tang H,Pan L.A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries.Adv Funct Mater2019;29:1901907

[78]

Yang C,Jian C,Tian L.Molten salt etched Ti3C2Tx MXene for ameliorated electrochemical performances of lithium-sulfur batteries.J Mater Sci Mater Electron2023;34:718

[79]

Liang L,Wu T,Xiao Z.Fluorine-free fabrication of MXene via photo-fenton approach for advanced lithium-sulfur batteries.ACS Nano2022;16:7971-81

[80]

Wang Z,Xu H,Kang S.Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage.J Colloid Interface Sci2020;577:329-36

[81]

Bao W,Xu J.Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery.Chemistry2017;23:12613-9

[82]

Zhang CF,Abdolhosseinzadeh S.Two-dimensional MXenes for lithium-sulfur batteries.Infomat2020;2:613-38

[83]

Yang BT,Gao Y,Xu B.Interfacial engineering and coupling of MXene/reduced graphene oxide/C3N4 aerogel with optimized d-band center as a free-standing sulfur carrier for high-performance Li-S batteries.Small Methods2024;8:2301102

[84]

Liang X,Kwok CY,Nazar LF.Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts.Adv Mater2017;29:1603040

[85]

Lv LP,Sun W.Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries.Small2019;15:e1804338

[86]

Tang X,Tan L,Li C.3D net-like GO-d-Ti3C2Tx MXene aerogels with catalysis/adsorption dual effects for high-performance lithium-sulfur batteries.ACS Appl Mater Interfaces2021;13:55235-42

[87]

Zhang S,Zhou X.Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets.Nanomicro Lett2020;12:112 PMCID:PMC7770945

[88]

Wang JL,Yan XF.Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery.Nano-Micro Lett2020;12:4 PMCID:PMC7770867

[89]

Song Y,Fan Z.Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry.Nano Energy2020;70:104555

[90]

Bao W,Wang C,Wang D.Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries.Adv Energy Mater2018;8:1702485

[91]

Luo Y,Mo L,Li S.A freestanding nitrogen-doped MXene/graphene cathode for high-performance Li-S batteries.Nanoscale Adv2022;4:2189-95 PMCID:PMC9419821

[92]

Zhang D,Hu R.Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries.Adv Funct Mater2020;30:2002471

[93]

Qin J,Xiao P.Engineering cooperative catalysis in Li-S batteries.Adv Energy Mater2023;13:2300611

[94]

Tan Z,Zhang X.Few-layered V2C MXene derived 3D V3S4 nanocrystal functionalized carbon flakes boosting polysulfide adsorption and catalytic conversion towards Li-S batteries.J Mater Chem A2022;10:18679-89

[95]

Tian S,Yang H.Self-supporting multicomponent hierarchical network aerogel as sulfur anchoring-catalytic medium for highly stable lithium-sulfur battery.Small2022;18:e2205163

[96]

Song C,Jin Q,Wang X.In-situ constructed accordion-like Nb2C/Nb2O5 heterostructure as efficient catalyzer towards high-performance lithium-sulfur batteries.J Power Sources2022;520:230902

[97]

Zhang H,Zhang P.MXene-derived TinO2n-1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: enhanced polysulfde mediation via defect engineering.Adv Mater2021;33:e2008447

[98]

Zhang M,Yue Z.Design and synthesis of novel pomegranate-like TiN@MXene microspheres as efficient sulfur hosts for advanced lithium sulfur batteries.RSC Adv2023;13:9322-32 PMCID:PMC10028499

[99]

Wang H,He SA.Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries.Nano-Micro Lett2022;14:189 PMCID:PMC9482562

[100]

Li T,Chen Z,Shen P.Hollow Ti3C2T MXene@CoSe2/N-doped carbon heterostructured composites for multiphase electrocatalysis process in lithium-sulfur batteries.Chem Eng J2023;474:145970

[101]

Li J,Guo C,Bao W.Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review.J Energy Chem2021;54:434-51

[102]

Wang L,Wang X.Dual-conductive CoSe2@TiSe2-C heterostructures promoting overall sulfur redox kinetics under high sulfur loading and lean electrolyte.Small2023;19:e2300089

[103]

Guo D,Su H.MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery.Nano Energy2019;61:478-85

[104]

Han X,Chen M.Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes.Energy Storage Mater2021;39:250-8

[105]

Yu X,Si L,Lu X.V4C3TX MXene: first-principles computational and separator modification study on immobilization and catalytic conversion of polysulfide in Li-S batteries.J Colloid Interface Sci2022;627:992-1002

[106]

Li N,Peng S,Han K.Ultra-lightweight Ti3C2T MXene modified separator for Li-S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation.J Energy Chem2020;42:116-25

[107]

Xiong D,Fang D.Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries.Small2021;17:e2007442

[108]

Liu P,Tian X.Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance.ACS Appl Energy Mater2020;3:2708-18

[109]

Li Y,Zhu Y.Polysulfide-inhibiting, thermotolerant and nonflammable separators enabled by DNA co-assembled CNT/MXene networks for stable high-safety Li-S batteries.Compos Part B Eng2023;251:110465

[110]

Zheng M,Song Y.Carbon-coated nitrogen, vanadium co-doped MXene interlayer for enhanced polysulfide shuttling inhibition in lithium-sulfur batteries.J Power Sources2023;580:233445

[111]

Gu H,Hu J.Asymmetrically coordinated Cu-N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium-sulfur batteries.Adv Energy Mater2023;13:2204014

[112]

Chen D,Shen S.In situ synthesis of VS4/Ti3C2Tx MXene composites as modified separators for lithium-sulfur battery.J Colloid Interface Sci2023;650:480-9

[113]

Liang Q,Jia X.MXene derivative Ta4C3-Ta2O5 heterostructure as bi-functional barrier for Li-S batteries.J Mater Sci Technol2023;151:89-98

[114]

Tian S,Liu G.Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery.Nanomicro Lett2022;14:196 PMCID:PMC9537413

[115]

Shi C,Tang Y.A hierarchical porous carbon aerogel embedded with small-sized TiO2 nanoparticles for high-performance Li-S batteries.Carbon2023;202:59-65

[116]

Wang Q,Qiao S.Mott-schottky MXene@WS2 heterostructure: structural and thermodynamic insights and application in ultra stable lithium-sulfur batteries.ChemSusChem2023;16:e202300507

[117]

Liang Q,Lu X.High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries.ACS Nano2024;18:2395-408

[118]

Wang X,Xu D.Synergistic effects of Co3Se4 and Ti2C3Tx for performance enhancement on lithium-sulfur batteries.ACS Appl Mater Interfaces2023;15:26882-92

[119]

Li B,Liu Y,Li S.Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes.Nano Energy2017;39:654-61

[120]

Li W,Li H.Layered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries.Batteries Supercaps2020;3:892-9

[121]

Wei C,Fan Z.Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries.Energy Storage Mater2021;41:141-51

[122]

Shi H,Lu P,Wen P.Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes.ACS Nano2019;13:14308-18

[123]

Ren Y,Liu H.CoP nanocages intercalated MXene nanosheets as a bifunctional mediator for suppressing polysulfide shuttling and dendritic growth in lithium-sulfur batteries.Chem Eng J2022;450:138046

[124]

Wei C,Wang P.In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating.Adv Mater2023;35:e2303780

[125]

Wei C,Wang P.One-step growth of ultrathin CoSe2 nanobelts on N-doped MXene nanosheets for dendrite-inhibited and kinetic-accelerated lithium-sulfur chemistry. Sci Bull 2024:S2095-9273(24)00199

[126]

Ma L,Xu DR.Enabling stable and low-strain lithium plating/stripping with 2D layered transition metal carbides by forming Li-zipped MXenes and a Li halide-rich solid electrolyte interphase.Angew Chem Int Ed2024;63:e202318721

[127]

Wang C,Du Y,Ye H.Spherical lithium deposition enables high Li-utilization rate, low negative/positive ratio, and high energy density in lithium metal batteries.Adv Funct Mater2023;33:2303427

[128]

Liu Y,Wang Z.Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries.Nat Commun2022;13:4415 PMCID:PMC9338099

[129]

Liu S,Xie Y.Nb2CTx MXene boosting PEO polymer electrolyte for all-solid-state Li-S batteries: two birds with one stone strategy to enhance Li+ conductivity and polysulfide adsorptivity.Rare Met2023;42:2562-76

[130]

Bao W,Qian C.Porous heteroatom-doped Ti3C2Tx MXene microspheres enable strong adsorption of sodium polysulfides for long-life room-temperature sodium-sulfur batteries.ACS Nano2021;15:16207-17

[131]

Wang Z,Guo Y.Coral polyp and spine dual-inspired gradient hierarchical architecture for ultrahigh-rate and long-life sodium storage. Adv Funct Mater 2024:2402178

[132]

Cheng Y,Yu F.Chemically bonded MXene/SnSe2 composite with special structural transformation as a high-performance anode for lithium and potassium ions battery.Chem Eng J2024;481:148737

[133]

Zheng RX,Yan Y,Wang XX.Cation vacancy modulated interfacial electronic interactions for enhanced electrocatalysis in lithium-oxygen batteries. Adv Funct Mater 2024:2316440.

[134]

Zhang H,Tang H.A high-voltage Zn-air battery based on an asymmetric electrolyte configuration.Energy Storage Mater2023;59:102791

[135]

Li J,Lin C.Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification.Adv Energy Mater2017;7:1602725

[136]

Wang XY,Huang HP.Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution.Small Methods2023;7:e2201694

PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

/