Emerging application of 2D materials for dendrite-free metal batteries

Mengyang Xu , Zongyuan Xin , Jun Wang , Tsz Wing Tang , Yaxuan Li , Yuyin Li , Tae-Hyung Kim , Zhengtang Luo

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400066

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400066 DOI: 10.20517/energymater.2023.94
Review

Emerging application of 2D materials for dendrite-free metal batteries

Author information +
History +
PDF

Abstract

Metal batteries using lithium, sodium, potassium, zinc, etc., as anodes have garnered tremendous attention in rechargeable batteries because of their highly desirable theoretical energy densities. However, large-scale application of these metal batteries is impeded by dendrite growth on the anode surface, which may penetrate the separator, leading to battery failure. Two dimensional (2D) materials featured by excellent mechanical strength and flexibility, tunable electronic properties and controllable assembly are promising materials for the construction of dendrite-free metal batteries. In this review, we summarize recent advancements of 2D materials for their potential use in critical components of dendrite-free batteries used as: (1) a host or artificial solid-electrolyte for metal anodes; (2) a solid electrolyte or modifier for electrolyte; and (3) an enhancement component for separators design. We conclude that 2D materials hold great promise for tackling the problems associated with dendrite formation by functioning as mechanical reinforcement and metal deposition regulators, along with improved safety, performance, and durability of batteries. Finally, this review discusses new perspectives and future directions in the field of 2D materials towards safe, high-energy metal batteries.

Keywords

2D materials / dendrite / metal battery

Cite this article

Download citation ▾
Mengyang Xu, Zongyuan Xin, Jun Wang, Tsz Wing Tang, Yaxuan Li, Yuyin Li, Tae-Hyung Kim, Zhengtang Luo. Emerging application of 2D materials for dendrite-free metal batteries. Energy Materials, 2024, 4(3): 400066 DOI:10.20517/energymater.2023.94

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Han X,Fu KK.Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nat Mater2017;16:572-9

[2]

Chen C,Li Y.Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors.Adv Energy Mater2017;7:1700595

[3]

Zhang B,Tarascon J.Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage.Prog Mater Sci2016;76:319-80

[4]

Bae S,Lee Y.Roll-to-roll production of 30-inch graphene films for transparent electrodes.Nat Nanotechnol2010;5:574-8

[5]

Kaltenbrunner M,Reeder J.An ultra-lightweight design for imperceptible plastic electronics.Nature2013;499:458-63

[6]

Cao Q.Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects.Adv Mater2009;21:29-53

[7]

Kasavajjula U,Appleby AJ.Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells.J Power Sources2007;163:1003-39

[8]

Xu Z,Luo Y,Kim J.Nanosilicon anodes for high performance rechargeable batteries.Prog Mater Sci2017;90:1-44

[9]

Placke T,Dühnen S.Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density.J Solid State Electrochem2017;21:1939-64

[10]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;:e1800561

[11]

Ding Y,Yu A,Chen Z.Automotive Li-Ion batteries: current status and future perspectives.Electrochem Energ Rev2019;2:1-28

[12]

Yuan H,Liu T.A review of concepts and contributions in lithium metal anode development.Mater Today2022;53:173-96

[13]

Lu G,Luan D,Lou XWD.Surface engineering toward stable lithium metal anodes.Sci Adv2023;9:eadf1550 PMCID:PMC10075991

[14]

Chu C,Cai F.Recent advanced skeletons in sodium metal anodes.Energy Environ Sci2021;14:4318-40

[15]

Wang T,Xu Z.Recent advanced development of artificial interphase engineering for stable sodium metal anodes.Small2022;18:e2102250

[16]

Ma L,Yao S.Dendrite-free lithium metal and sodium metal batteries.Energ Storage Mater2020;27:522-54

[17]

Liu P.Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces.Acc Chem Res2020;53:1161-75

[18]

Wei C,Fei H.Recent advances and perspectives in stable and dendrite-free potassium metal anodes.Energ Storage Mater2020;30:206-27

[19]

Yi Z,Hou F,Liang J.Strategies for the stabilization of zn metal anodes for Zn-Ion batteries.Adv Energy Mater2021;11:2003065

[20]

Li C,Liang S.Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries.Energ Environ Mater2020;3:146-59

[21]

Niu J,Aurbach D.Alloy anode materials for rechargeable Mg ion batteries.Adv Energy Mater2020;10:2000697

[22]

Jiang J.Iron anode-based aqueous electrochemical energy storage devices: Recent advances and future perspectives.Interdiscip Mater2022;1:116-39

[23]

Jiang M,Meng P.Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries.Adv Mater2022;34:e2102026

[24]

Wu F,Bai Y.Paving the path toward reliable cathode materials for aluminum-ion batteries.Adv Mater2019;31:e1806510

[25]

Yang H,Li J.The rechargeable aluminum battery: opportunities and challenges.Angew Chem Int Ed Engl2019;58:11978-96

[26]

Wei C,Zhang Y.Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries.ACS Nano2021;15:12741-67

[27]

Rosenman A,Salitra G,Garsuch A.Review on Li-sulfur battery systems: an integral perspective.Adv Energy Mater2015;5:1500212

[28]

Luo C,Borodin O.Activation of oxygen-stabilized sulfur for Li and Na batteries.Adv Funct Materials2016;26:745-52

[29]

Zhou C,Zhou S.Strategies toward anode stabilization in nonaqueous alkali metal-oxygen batteries.Chem Commun (Camb)2022;58:8014-24

[30]

Wu C,Zhang J.Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes.Nano Energy2021;87:106081

[31]

Zhang H.Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: a review.J Power Sources2021;493:229445

[32]

Li B.Progress and directions in low-cost redox-flow batteries for large-scale energy storage.Nat Sci Rev2017;4:91-105

[33]

Nie W,Sun Q.Design Strategies toward high-performance Zn metal anode.Small Methods2023;:e2201572

[34]

Fan L.Recent advances in effective protection of sodium metal anode.Nano Energy2018;53:630-42

[35]

Xu M,Ihsan-ul-haq M.NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries.Energ Storage Mater2022;44:477-86

[36]

Zhang Y,Popovic J.Towards better Li metal anodes: challenges and strategies.Mater Today2020;33:56-74

[37]

Han Y,Xiao Z.Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives.InfoMat2021;3:155-74

[38]

Zhang X,Tang W.Challenges and opportunities for multivalent metal anodes in rechargeable batteries.Adv Funct Materials2020;30:2004187

[39]

Chen Y,Zhang H,Zhang H.The challenge of lithium metal anodes for practical applications.Small Methods2019;3:1800551

[40]

Zheng X,Luo W,Hao Y.Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions.Energy Storage Mater2019;16:6-23

[41]

Du W,Yang Y,Ye M.Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries.Energy Environ Sci2020;13:3330-60

[42]

Brissot C,Chazalviel J,Lascaud S.In situ study of dendritic growth inlithium/PEO-salt/lithium cells.Electrochim Acta1998;43:1569-74

[43]

Rosso M,Brissot C,Lascaud S.Onset of dendritic growth in lithium/polymer cells.J Power Sources2001;97-98:804-6

[44]

Zhang R,Zhao CZ.Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth.Adv Mater2016;28:2155-62

[45]

Zhang Y,Hitz E.A carbon-based 3D current collector with surface protection for Li metal anode.Nano Res2017;10:1356-65

[46]

Brissot C,Chazalviel J-.In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells.J Electrochem Soc1999;146:4393-400

[47]

Brissot C,Chazalviel J.Dendritic growth mechanisms in lithium/polymer cells.J Power Sources1999;81-82:925-9

[48]

Zhang Y,Sendeku MG.Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures.Adv Mater2019;31:e1901694

[49]

Zavabeti A,Zhong L,Yao Z.Two-dimensional materials in large-areas: synthesis, properties and applications.Nanomicro Lett2020;12:66 PMCID:PMC7770797

[50]

Mannix AJ,Hersam MC.Synthesis and chemistry of elemental 2D materials.Nat Rev Chem2017;1

[51]

Rojaee R.Two-dimensional materials to address the lithium battery challenges.ACS Nano2020;14:2628-58

[52]

Wei C,An Y.Recent advances of emerging 2D mxene for stable and dendrite-free metal anodes.Adv Funct Materials2020;30:2004613

[53]

Zheng S,Chen J,Pan Z.2D materials boost advanced Zn anodes: principles, advances, and challenges.Nanomicro Lett2023;15:46 PMCID:PMC9908814

[54]

Li Z,Guan H.Rationally integrating 2D confinement and high sodiophilicity toward SnO(2)/Ti(3) C(2) T(x) composites for high-performance sodium-metal anodes.Small2023;19:e2208277

[55]

Cao Z,Cui Y.Harnessing the unique features of 2D materials toward dendrite-free metal anodes.Energy Environ Mater2022;5:45-67

[56]

Bunch JS,Alden JS.Impermeable atomic membranes from graphene sheets.Nano Lett2008;8:2458-62

[57]

Lee C,Kysar JW.Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science2008;321:385-8

[58]

Nair RR,Grigorenko AN.Fine structure constant defines visual transparency of graphene.Science2008;320:1308

[59]

Bolotin KI,Klima M,Hone J,Stormer HL.Ultrahigh electron mobility in suspended graphene.Solid State Commun2008;146:351

[60]

Su CY,Xu Y,Khlobystov AN.High-quality thin graphene films from fast electrochemical exfoliation.ACS Nano2011;5:2332-9

[61]

Muñoz R.Review of CVD synthesis of graphene.Chem Vap Deposition2013;19:297-322

[62]

Vazirisereshk MR,Zhao MQ,Carpick RW.Nanoscale friction behavior of transition-metal dichalcogenides: role of the chalcogenide.ACS Nano2020;14:16013-21

[63]

Zong X,Wu G.Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation.J Am Chem Soc2008;130:7176-7

[64]

Liu Y,Zhu E.Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions.Nature2018;557:696-700

[65]

Sun G,Li J.Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions.Nano Res2019;12:1139-45

[66]

Wang X,Zhu Y.Chemical vapor deposition of trigonal prismatic NbS(2) monolayers and 3R-polytype few-layers.Nanoscale2017;9:16607-11

[67]

Deng Y,Zhao X.Controlled Growth of 3R Phase Tantalum Diselenide and Its Enhanced Superconductivity.J Am Chem Soc2020;142:2948-55

[68]

Acerce M,Chhowalla M.Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.Nat Nanotechnol2015;10:313-8

[69]

Liu Z,Zhuang M.Confinement-enhanced rapid interlayer diffusion within graphene-supported anisotropic ReSe(2) electrodes.ACS Appl Mater Interfaces2019;11:31147-54

[70]

Liu Z,Xu GL.Highly reversible sodiation/desodiation from a carbon-sandwiched snS(2) nanosheet anode for sodium ion batteries.Nano Lett2020;20:3844-51

[71]

Kim SY,Ciobanu CV.Recent developments in controlled vapor-phase growth of 2D group 6 transition metal dichalcogenides.Adv Mater2019;31:e1804939

[72]

Wang F,He P.Uncovering the conduction behavior of van der waals ambipolar semiconductors.Adv Mater2019;31:e1805317

[73]

Chen Y,Cong C.In-Plane Anisotropic Thermal conductivity of few-layered transition metal dichalcogenide Td-WTe(2).Adv Mater2019;31:e1804979

[74]

Zhu C,Liu F.Light-tunable 1T-TaS(2) charge-density-wave oscillators.ACS Nano2018;12:11203-10

[75]

Bosi M.Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review.RSC Adv2015;5:75500-18

[76]

Zhang K,Wang F,Wang J.Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications.J Mater Chem C2017;5:11992-2022

[77]

Costa C,Gonçalves R,Campo FD.Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities.Energ Storage Mater2021;37:433-65

[78]

Chen TA,Tseng CC.Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111).Nature2020;579:219-23

[79]

Ma KY,Jin S.Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111).Nature2022;606:88-93

[80]

Kim KK,Jia X.Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition.Nano Lett2012;12:161-6

[81]

Kim SM,Park MH.Synthesis of large-area multilayer hexagonal boron nitride for high material performance.Nat Commun2015;6:8662 PMCID:PMC4639899

[82]

Zeng F,Wei W.Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates.Nat Commun2023;14:6421 PMCID:PMC10570391

[83]

Singhal R,Mcilroy DN.Synthesis of hexagonal boron nitride films on silicon and sapphire substrates by low-pressure chemical vapor deposition.Thin Solid Films2021;733:138812

[84]

Mehek R,Noor T.Metal-organic framework based electrode materials for lithium-ion batteries: a review.RSC Adv2021;11:29247-66 PMCID:PMC9040901

[85]

Liu X,Wang H.In situ growth of covalent organic framework nanosheets on graphene as the cathode for long-life high-capacity lithium-ion batteries.Adv Mater2022;34:e2203605

[86]

Kong L,Huang H,Bu X.Metal/covalent-organic framework based cathodes for metal-ion batteries.Adv Energy Mater2022;12:2100172

[87]

Cravillon J,Lohmeier S,Huber K.Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework.Chem Mater2009;21:1410-2

[88]

Chui SS,Charmant JP,Williams ID.A chemically functionalizable nanoporous material.Science1999;283:1148-50

[89]

Tranchemontagne DJ,Yaghi OM.Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0.Tetrahedron2008;64:8553-7

[90]

Stock N.Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.Chem Rev2012;112:933-69

[91]

Campbell NL,Ritchie LK.Rapid microwave synthesis and purification of porous covalent organic frameworks.Chem Mater2009;21:204-6

[92]

Biswal BP,Kandambeth S,Heine T.Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks.J Am Chem Soc2013;135:5328-31

[93]

Kim S,Lee M.Rapid Photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth.Adv Funct Materials2017;27:1700925

[94]

Ren H.Electrochemical synthesis methods of metal-organic frameworks and their environmental analysis applications: a review.ChemElectroChem2022;9:e202200196

[95]

Zhang M,Zhang S.Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions.J Am Chem Soc2020;142:9169-74

[96]

Alhabeb M,Anasori B.Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene).Chem Mater2017;29:7633-44

[97]

Sang X,Lin MW.Atomic defects in monolayer titanium carbide (Ti(3)C(2)T(x)) MXene.ACS Nano2016;10:9193-200

[98]

Guo Z,Si C.Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories.Phys Chem Chem Phys2015;17:15348-54

[99]

Hart JL,Lang AC.Control of MXenes' electronic properties through termination and intercalation.Nat Commun2019;10:522 PMCID:PMC6355901

[100]

Jiang Y,Xie X.Oxygen-functionalized ultrathin Ti(3)C(2)T(x) MXene for enhanced electrocatalytic hydrogen evolution.ChemSusChem2019;12:1368-73

[101]

Naguib M,Presser V.Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.Adv Mater2011;23:4248-53

[102]

Zhan X,Zhou J.MXene and MXene-based composites: synthesis, properties and environment-related applications.Nanoscale Horiz2020;5:235-58

[103]

Anasori B,Beidaghi M.Two-Dimensional, ordered, double transition metals carbides (MXenes).ACS Nano2015;9:9507-16

[104]

Li Y,Lin Z.A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte.Nat Mater2020;19:894-9

[105]

Yang S,Wang F.Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system.Angew Chem Int Ed Engl2018;57:15491-5

[106]

Li T,Liu Q.Fluorine-free synthesis of high-purity Ti(3)C(2)T(x) (T=OH, O) via alkali treatment.Angew Chem Int Ed Engl2018;57:6115-9

[107]

Wang D,Filatov AS.Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes.Science2023;379:1242-7

[108]

Liu J.Two-dimensional nanoarchitectures for lithium storage.Adv Mater2012;24:4097-111

[109]

Sun W,Zhu J.Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage.J Power Sources2015;274:755-61

[110]

Zhang X,Zhu J.Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes.Nano Res2010;3:643-52

[111]

Garg N,Ganguli AK.Nickel cobaltite nanostructures with enhanced supercapacitance activity.J Phys Chem C2014;118:17332-41

[112]

Jiang H,Li C.Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors.J Mater Chem2011;21:3818

[113]

Kurra N,Alshareef HN.Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density.Advanced Energy Materials2015;5:1401303

[114]

Yang GW,Li HL.Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance.Chem Commun (Camb)2008;:6537-9

[115]

Xia F,Jia Y.Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics.Nat Commun2014;5:4458

[116]

Qiao J,Hu ZX,Ji W.High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus.Nat Commun2014;5:4475 PMCID:PMC4109013

[117]

Li L,Ye GJ.Quantum Hall effect in black phosphorus two-dimensional electron system.Nat Nanotechnol2016;11:593-7

[118]

Luo Z,Deng Y.Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus.Nat Commun2015;6:8572 PMCID:PMC4634212

[119]

Guo Z,Lu S.From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics.Adv Funct Materials2015;25:6996-7002

[120]

Pei J,Yang J.Producing air-stable monolayers of phosphorene and their defect engineering.Nat Commun2016;7:10450 PMCID:PMC4735856

[121]

Gao J,Zhang YW.The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration.J Am Chem Soc2016;138:4763-71

[122]

Wong H,Wang J.Two-dimensional materials for high density, safe and robust metal anodes batteries.Nano Converg2023;10:37 PMCID:PMC10415249

[123]

Zhang C,Zhang J,Tang W.2D Materials for lithium/sodium metal anodes.Adv Energy Mater2018;8:1802833

[124]

Shang M,Wong FEY.A BF(3) -doped MXene dual-layer interphase for a reliable lithium-metal anode.Adv Mater2023;35:e2210111

[125]

Han KH,Kim IH.A 2D ultrathin nanopatterned interlayer to suppress lithium dendrite growth in high-energy lithium-metal anodes.Adv Mater2022;34:e2203992

[126]

Zhou J,Wu F.Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries.Adv Mater2021;33:e2101649

[127]

Jiang Z,Yan L.Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries.Energ Storage Mater2018;11:267-73

[128]

Landsman MR,Brodfuehrer SH.Water treatment: are membranes the panacea?.Annu Rev Chem Biomol Eng2020;11:559-85

[129]

Denny MS,Benz L.Metal–organic frameworks for membrane-based separations.Nat Rev Mater2016;1

[130]

Zhang Y,Zhao W.Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode.Adv Mater2022;34:e2108114

[131]

Zhao F,Wei Y.Constructing artificial sei layer on lithiophilic MXene surface for high-performance lithium metal anodes.Adv Sci (Weinh)2022;9:e2103930 PMCID:PMC8867166

[132]

Zhang D,Li B,Yang S.Horizontal growth of lithium on parallelly aligned mxene layers towards dendrite-free metallic lithium anodes.Adv Mater2019;31:e1901820

[133]

Cha E,Park J.2D MoS(2) as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries.Nat Nanotechnol2018;13:337-44

[134]

Zhao W,Bayhan Z.A two-dimensional cation-deficient Ti0.87O2 artificial protection layer for stable sodium metal anodes.Materials Today Energy2023;34:101271

[135]

Tian Y,Yang Y.Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries.Energ Storage Mater2022;49:122-34

[136]

Zhang X,Miu Y.Atomic-scale inorganic carbon additive with rich surface polarity and low lattice mismatch for zinc to boost Zn metal anode reversibility.Chem Eng J2024;482:148807

[137]

Yang M.Interfacial defect of lithium metal in solid-state batteries.Angew Chem Int Ed Engl2021;60:21494-501

[138]

Liu J,Zhang Z.Epitaxial electrocrystallization of magnesium via synergy of magnesiophilic interface, lattice matching, and electrostatic confinement.ACS Nano2022;16:9894-907

[139]

Wang J,Wu J.Interfacial "single-atom-in-defects" catalysts accelerating Li(+) desolvation kinetics for long-lifespan lithium-metal batteries.Adv Mater2023;35:e2302828

[140]

Li Y,Liang J.Lithiophilic diffusion barrier layer on stainless steel mesh for dendrite suppression and stable lithium metal anode.Appl Mater Today2021;22:100896

[141]

Wu Y.2D material as anode for sodium ion batteries: Recent progress and perspectives.Energ Storage Mater2019;16:323-43

[142]

Tian H,Liu J.Nanoengineering carbon spheres as nanoreactors for sustainable energy applications.Adv Mater2019;31:e1903886

[143]

Tian H,Tian H.Single-atom catalysts for high-energy rechargeable batteries.Chem Sci2021;12:7656-76 PMCID:PMC8188463

[144]

Li Y,Wang J.Deposition of horizontally stacked Zn crystals on single layer 1T-VSe 2 for dendrite-free Zn metal anodes.Adv Energy Mater2022;12:2202983

[145]

Zheng J,Tang T.Reversible epitaxial electrodeposition of metals in battery anodes.Science2019;366:645-8

[146]

Wang Y,Yin J.MoS(2) -Mediated epitaxial plating of Zn metal anodes.Adv Mater2023;35:e2208171

[147]

Wang C,Feng Y,Cao F.Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries.Nano Energy2020;74:104817

[148]

Wang T,Lu Y,Fan L.Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts.Energ Storage Mater2018;15:274-81

[149]

Zhang S,Li D.Commercial carbon cloth: an emerging substrate for practical lithium metal batteries.Energ Storage Mater2022;48:172-90

[150]

Yang H,Wang H.Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode.J Colloid Interface Sci2022;611:317-26

[151]

Zhao Y,Li X.Carbon paper interlayers: a universal and effective approach for highly stable Li metal anodes.Nano Energy2018;43:368-75

[152]

Lu Z,Chen X.Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating.Energ Storage Mater2018;11:47-56

[153]

Chen Q,Zhang X.Vertically aligned mxene nanosheet arrays for high-rate lithium metal anodes.Adv Energy Mater2022;12:2200072

[154]

Xu M,Li Y.Uniform SnSe nanoparticles on 3D graphene host enabling a dual-nucleation-site interface for dendrite-free sodium metal batteries.Energ Storage Mater2023;60:102848

[155]

Shi H,Zheng S,Wu ZS.Three dimensional Ti(3)C(2) MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes.Nanoscale Adv2020;2:4212-9 PMCID:PMC9417470

[156]

Yan J,Kong D.3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode.J Mater Chem A2020;8:19843-54

[157]

Yang H,Li W.A simple and effective host for sodium metal anode: a 3D-printed high pyrrolic-N doped graphene microlattice aerogel.J Mater Chem A2022;10:16842-52

[158]

Wang Z,Wang H.3D-Printed sodiophilic V(2)CT(x)/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity.ACS Nano2022;16:9105-16

[159]

Zhou J,Wu F.Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn-Ion Batteries.Adv Mater2022;34:e2106897

[160]

Wang F,Li H.Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries.Energ Storage Mater2022;50:641-7

[161]

Heo YH,Ha S.3D-structured bifunctional MXene paper electrodes for protection and activation of Al metal anodes.J Mater Chem A2023;11:14380-9

[162]

Wei C,Zhang Y.Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries.Nano Res2021;14:3576-84

[163]

Yang T,Wu F.A soft lithiophilic graphene aerogel for stable lithium metal anode.Adv Funct Materials2020;30:2002013

[164]

Hu Z,Zhou M.Lithiophilic carbon nanofiber/graphene nanosheet composite scaffold prepared by a scalable and controllable biofabrication method for ultrastable dendrite-free lithium-metal anodes.Small2022;18:e2104735

[165]

Cao Z,Du Z.Low-tortuous MXene (TiNbC) accordion arrays enabled fast ion diffusion and charge transfer in dendrite-free lithium metal anodes.Adv Energy Mater2022;12:2201189

[166]

Luo J,Matios E.Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode.Nano Lett2020;20:7700-8

[167]

Xue P,Li L.A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes.Adv Mater2022;34:e2110047

[168]

Zhang Y,Wang Z.Flexible, free-standing and dendrite-free iron metal anodes enabled by MXene frameworks for aqueous Fe metal dual-ion batteries.Chemical Engineering Journal2023;458:141388

[169]

Wu J,Rao Z.Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes.Nano Energy2020;72:104725

[170]

Zhang Y,Wu K.2D anionic nanosheet additive for stable Zn metal anodes in aqueous electrolyte.Chem Eng J2022;430:133042

[171]

Aslam MK,Hussain T.How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression.Nano Energy2021;86:106142

[172]

Jiang B,Hou T.Polymer electrolytes shielded by 2D Li0.46Mn0.77PS3 Li+-conductors for all-solid-state lithium-metal batteries.Energ Storage Mater2023;56:183-91

[173]

Pan Q,Kota S.2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries.Nanoscale Adv2019;1:395-402 PMCID:PMC9473207

[174]

Liu C,An Y.Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries.Chem Eng J2022;430:132748

[175]

Han X,Chen M.Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes.Energ Storage Mater2021;39:250-8

[176]

Wu L,Shang P,Wu Z.Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes.J Mater Chem A2021;9:27408-14

[177]

Zhou J,Jiang W.Ion-sieving Janus separator modified by Ti3C2Tx toward dendrite-free zinc-ion battery.J Alloy Compd2023;950:169836

[178]

Guo C,Zhou MX.Clay-originated two-dimensional holey silica separator for dendrite-free lithium Metal Anode.Small2023;19:e2301428

[179]

Jiang C,Zhu S.Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs).Angew Chem Int Ed Engl2018;57:16072-6

[180]

Cao Z,Song B.Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode.Adv Funct Materials2023;33:2300339

[181]

Ni L,Liu H.In situ visualizing the interplay between the separator and potassium dendrite growth by synchrotron X-ray tomography.Nano Energy2021;83:105841

[182]

Yu SH,Brock JD.Regulating key variables and visualizing lithium dendrite growth: an operando X-ray Study.J Am Chem Soc2019;141:8441-9

[183]

Wu Z,Chen L,Guo Z.In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries.Batteries Supercaps2021;4:1547-66

[184]

Mathew M,Vaidyanathan A,Rout CS.Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments.Anal Bioanal Chem2021;413:727-62 PMCID:PMC7581469

[185]

Xiao X,Zhong X.Rational design of flexible Zn-based batteries for wearable electronic devices.ACS Nano2023;17:1764-802

[186]

Ma Q,Luo D.2D materials for all-solid-state lithium batteries.Adv Mater2022;34:e2108079

[187]

Wang Q,Xiao Y.Leap of Li metal anodes from coin cells to pouch cells: challenges and progress.Electrochem Energy Rev2023;6

[188]

Deng S,Rao A.Fast-charging halide-based all-solid-state batteries by manipulation of current collector interface.Adv Funct Materials2022;32:2200767

[189]

Duan H,Yu R.In situ constructed 3d lithium anodes for long-cycling all-solid-state batteries.Adv Energy Mater2023;13:2300815

PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

/