Stable ultrathin lithium metal anode enabled by self-adapting electrochemical regulating strategy

Si-Yuan Zeng , Wen-Long Wang , Deyuan Li , Chunpeng Yang , Zi-Jian Zheng

Energy Materials ›› 2024, Vol. 4 ›› Issue (2) : 400029

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (2) :400029 DOI: 10.20517/energymater.2023.93
Article

Stable ultrathin lithium metal anode enabled by self-adapting electrochemical regulating strategy

Author information +
History +
PDF

Abstract

Ultrathin lithium (Li) metal foils with controllable capacity could realize high-specific-energy batteries; however, the pulverization of Li metal foils due to its extreme volume change results in rapid active Li loss and capacity fading. Here, we report a strategy to stabilize ultrathin Li metal anode via in-situ transferring Li from ultrathin Li foil into a well-designed three-dimensional gradient host during a cycling process. A three-dimensional carbon fiber with gradient distribution of Ag nanoparticles is placed on the ultrathin Li foil in advance and acts as a Li reservoir, guiding Li deposition into its interior and thus alleviating the volume change of ultrathin Li foil anodes. Hence, a high reversibility of Li metal is achieved and Li pulverization is suppressed, which can be witnessed by a long cyclic life in the symmetric cells. The proposed method offers a versatile and facile approach for protecting ultrathin Li metal anodes, which will boost their commercial application process.

Keywords

Li metal anode / 3D scaffold / self-adapting / long lifespan / stability

Cite this article

Download citation ▾
Si-Yuan Zeng, Wen-Long Wang, Deyuan Li, Chunpeng Yang, Zi-Jian Zheng. Stable ultrathin lithium metal anode enabled by self-adapting electrochemical regulating strategy. Energy Materials, 2024, 4(2): 400029 DOI:10.20517/energymater.2023.93

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin D,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat Nanotechnol2017;12:194-206

[2]

Zhang Y,Popovic J.Towards better Li metal anodes: challenges and strategies.Mater Today2020;33:56-74

[3]

Lu G,Luan D,Lou XWD.Surface engineering toward stable lithium metal anodes.Sci Adv2023;9:eadf1550 PMCID:PMC10075991

[4]

Zhang W,Liu S.Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO2 chemistry.Proc Natl Acad Sci U S A2023;120:e2219692120 PMCID:PMC10083592

[5]

Shi P,Li T.Electrochemical diagram of an ultrathin lithium metal anode in pouch cells.Adv Mater2019;31:e1902785

[6]

Chen H,Boyle DT.Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries.Nat Energy2021;6:790-8

[7]

Jin D,Jo T,Lee H.Robust cycling of ultrathin Li metal enabled by nitrate-preplanted Li powder composite.Adv Energy Mater2021;11:2003769

[8]

Li T,Zhang R,Cheng X.Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior.Nano Res2019;12:2224-9

[9]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[10]

Gao RM,Wang CY,Cao FF.Fatigue-resistant interfacial layer for safe lithium metal batteries.Angew Chem Int Ed Engl2021;60:25508-13

[11]

Cheng B,Yin X.Recent progress on the air-stable battery materials for solid-state lithium metal batteries.Adv Sci2024;11:e2307726 PMCID:PMC10853717

[12]

Ye H,Yin YX,Guo YG.An outlook on low-volume-change lithium metal anodes for long-life batteries.ACS Cent Sci2020;6:661-71 PMCID:PMC7256944

[13]

Wang C,Zheng Z.Toward practical high-energy and high-power lithium battery anodes: present and future.Adv Sci2022;9:e2105213 PMCID:PMC8948585

[14]

Liu Y,Wang Y.Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries.Science2022;375:739-45

[15]

Wu H,Wang C,Xu W.Recent progress in understanding solid electrolyte interphase on lithium metal anodes.Adv Energy Mater2021;11:2003092

[16]

Lee J,Qutaish H.Structurally stabilized lithium-metal anode via surface chemistry engineering.Energy Storage Mater2021;37:315-24

[17]

Li Q,Zeng Y.Lithium reduction reaction for interfacial regulation of lithium metal anode.Chem Commun2022;58:2597-611

[18]

Cheng Y,Chen J.Catalytic chemistry derived artificial solid electrolyte interphase for stable lithium metal anodes working at 20 mA cm-2 and 20 mAh cm-2.Angew Chem Int Ed Engl2023;62:e202305723

[19]

Wang Y,Zhao L.Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification.Adv Mater2021;33:e2008133

[20]

Kang D,Zhang R.In-situ organic SEI layer for dendrite-free lithium metal anode.Energy Storage Mater2020;27:69-77

[21]

Hou LP,Li Z.Electrolyte design for improving mechanical stability of solid electrolyte interphase in lithium-sulfur batteries.Angew Chem Int Ed Engl2023;62:e202305466

[22]

Wang Z,Wu C,Mao J.Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes.Chem Sci2021;12:8945-66 PMCID:PMC8261733

[23]

Chen C,Wang G,Xiong X.Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes.Adv Funct Mater2022;32:2107249

[24]

Liu D,Liang Q,Fu H.An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte.Chem Commun2021;57:9232-5

[25]

Xiao J,Wei Y.In-situ formed protecting layer from organic/inorganic concrete for dendrite-free lithium metal anodes.Nano Lett2020;20:3911-7

[26]

Zhang QK,Wan J.Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries.Nat Energy2023;8:725-35

[27]

Feng Y,Li B,Song J.Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface.J Mater Chem A2019;7:6090-8

[28]

Zheng ZJ,Zhang Q.Low volume change composite lithium metal anodes.Nano Energy2019;64:103910

[29]

Jiang Q,Liu J.A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity.Angew Chem Int Ed Engl2020;59:5273-7

[30]

Ye H,Yao HR.Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries.Angew Chem Int Ed Engl2019;58:1094-9

[31]

Chen J,Lei L.Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes.Nano Lett2020;20:3403-10

[32]

Yang T,Wu F.A soft lithiophilic graphene aerogel for stable lithium metal anode.Adv Funct Mater2020;30:2002013

[33]

Liu S,Li Q.Crumpled graphene balls stabilized dendrite-free lithium metal anodes.Joule2018;2:184-93

[34]

Feng X,Gao B,He X.Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries.Nano Res2022;15:352-60

[35]

Xiong P,Chen Z.Thiourea-based polyimide/RGO composite cathode: a comprehensive study of storage mechanism with alkali metal ions.Sci China Mater2020;63:1929-38

[36]

Zeng SY,Yang C.Limited lithium loading promises improved lithium-metal anodes in interface-modified 3D matrixes.ACS Appl Mater Interfaces2022;14:41065-71

[37]

Lee Y,Lee S.Construction of hierarchical surface on carbon fiber paper for lithium metal batteries with superior stability.Adv Energy Mater2023;13:2203770

[38]

Chen H,Li C.Electrospun carbon nanofibers for lithium metal anodes: Progress and perspectives.Chin Chem Lett2022;33:141-52

[39]

Lu Q,Meng X.Carbon materials for stable Li metal anodes: challenges, solutions, and outlook.Carbon Energy2021;3:957-75

[40]

Yuan H,Tian H.An ultrastable lithium metal anode enabled by designed metal fluoride spansules.Sci Adv2020;6:eaaz3112 PMCID:PMC7060059

[41]

Huang W,Yu R,Liu Z.Single-atom lithiophilic sites confined within ordered porous carbon for ultrastable lithium metal anodes.Energy Environ Mater2023;6:e12466

[42]

Lu C,Wei C,Rümmeli MH.Synergized N, P dual-doped 3D carbon host derived from filter paper for durable lithium metal anodes.J Colloid Interface Sci2023;632:1-10

[43]

Feng YS,Wang P,Cao FF.Work-function-induced interfacial electron/ion transport in carbon hosts toward dendrite-free lithium metal anodes.Angew Chem Int Ed Engl2023;62:e202310132

[44]

Zheng ZJ,Guo ZP.Recent progress in designing stable composite lithium anodes with improved wettability.Adv Sci2020;7:2002212 PMCID:PMC7675197

[45]

Li L,Cao F.Lithiophilic interface guided transient infiltration of molten lithium for stable 3D composite lithium anodes.Nano Res2023;16:8297-303

PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

/