Designing the next generation of symmetrical organic redox flow batteries using helical carbocations

Jules Moutet , Tarek H. El-Assaad , Ramandeep Kaur , David D. Mills , Thomas L. Gianetti

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400024

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400024 DOI: 10.20517/energymater.2023.92
Article

Designing the next generation of symmetrical organic redox flow batteries using helical carbocations

Author information +
History +
PDF

Abstract

In recent years, non-aqueous fully organic Redox Flow Batteries (RFBs) have displayed potential in broadening the electrochemical window and enhancing energy density in RFBs by relying on redox-active organic molecules to provide improved sustainability in comparison to metal-based charge carriers. Of particular interest, systems that rely on a single bipolar redox molecule (BRM) for their operation, known as symmetrical organic RFBs, have gained momentum as the utilization of a BRM eliminates membrane crossover issues, thus extending the lifespan of electrical energy storage systems while reducing their cost. In this manuscript, we will present our contribution to this field through the design of tunable bipolar molecules within the helicene carbocation class. This particular type of BRM is synthetically very affordable and has proven to be highly modifiable and robust. Through the examination of 11 examples, we will demonstrate how an approach based on readily available electrochemical tools can be efficiently employed to generate and assess a library of compounds for future full flow RFB applications.

Keywords

Electrochemistry / energy storage / symmetric organic redox flow battery / carbenium ion / electrolyte design / helicenium

Cite this article

Download citation ▾
Jules Moutet, Tarek H. El-Assaad, Ramandeep Kaur, David D. Mills, Thomas L. Gianetti. Designing the next generation of symmetrical organic redox flow batteries using helical carbocations. Energy Materials, 2024, 4(3): 400024 DOI:10.20517/energymater.2023.92

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dresselhaus MS.Alternative energy technologies.Nature2001;414:332-7

[2]

Weitemeyer S,Vogt T.Integration of renewable energy sources in future power systems: the role of storage.Renew Energy2015;75:14-20

[3]

Gür TM.Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage.Energy Environ Sci2018;11:2696-767

[4]

International Energy Agency. Net zero roadmap: a global pathway to keep the 1.5 °C goal in reach; Paris: IEA. 2023. Available from: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach [Last accessed on 13 Mar 2024].

[5]

Hirsh HS,Tan DHS,Zhao E.Sodium-ion batteries paving the way for grid energy storage.Adv Energy Mater2020;10:2001274

[6]

Shang W,Liu Y.Rechargeable alkaline zinc batteries: progress and challenges.Energy Stor Mater2020;31:44-57

[7]

Buckingham R,Atanassov P.Aluminum-air batteries: a review of alloys, electrolytes and design.J Power Sources2021;498:229762

[8]

Huang H,Hou L.Advanced protective layer design on the surface of Mg-based metal and application in batteries: challenges and progress.J Power Sources2022;542:231755

[9]

Goodenough JB,Yoshino A. The Nobel prize in chemistry 2019. For the development of lithium-ion batteries. 2019. Available from: https://www.nobelprize.org/prizes/chemistry/2019/ [Last accessed on 13 Mar 2024].

[10]

Masias A,Paxton WA.Opportunities and challenges of lithium ion batteries in automotive applications.ACS Energy Lett2021;6:621-30

[11]

Wu J,Zhong B,Liu W.Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries.ACS Appl Mater Interfaces2022;14:27873-81

[12]

Tarascon JM.Issues and challenges facing rechargeable lithium batteries.Nature2001;414:359-67

[13]

Winter M,Xu K.Before Li ion batteries.Chem Rev2018;118:11433-56

[14]

Yang Z,Kintner-Meyer MC.Electrochemical energy storage for green grid.Chem Rev2011;111:3577-613

[15]

Badwal SP,Munnings C,Hollenkamp AF.Emerging electrochemical energy conversion and storage technologies.Front Chem2014;2:79 PMCID:PMC4174133

[16]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[17]

Alotto P,Moro F.Redox flow batteries for the storage of renewable energy: a review.Renew Sustain Energy Rev2014;29:325-35

[18]

Ravikumar MK,Jaiswal N,Shukla A.The renaissance in redox flow batteries.J Solid State Electr2017;21:2467-88

[19]

Sánchez-Díez E,Guarnieri M.Redox flow batteries: status and perspective towards sustainable stationary energy storage.J Power Sources2021;481:228804

[20]

Zeng YK,An L,Wei L.A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage.J Power Sources2015;300:438-43

[21]

Suttil JA,Escalante-garcia IL.Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries.J Mater Chem A2015;3:7929-38

[22]

Beh ES,Gracia RL,Gordon RG.A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention.ACS Energy Lett2017;2:639-44

[23]

Lourenssen K,Ahmadpour F,Tasnim S.Vanadium redox flow batteries: a comprehensive review.J Energy Stor2019;25:100844

[24]

Park M,Fell EM.A high voltage aqueous zinc-organic hybrid flow battery.Adv Energy Mater2019;9:1900694

[25]

DOE office of ARPR-E. GRIDS program overview. Available from: https://arpa-e.energy.gov/sites/default/files/documents/files/GRIDS_ProgramOverview.pdf [Last accessed on 13 Mar 2024].

[26]

U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. Toxicological profile for vanadium. In: ATSDR’s toxicological profiles; Boca Raton, FL: CRC Press. 2012. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp58.pdf [Last accessed on 20 Mar 2024].

[27]

Wittman RM,Lambert TN,Preger Y.Perspective - on the need for reliability and safety studies of grid-scale aqueous batteries.J Electrochem Soc2020;167:090545

[28]

Park M,Wang W.Material design and engineering of next-generation flow-battery technologies.Nat Rev Mater2017;2:16080

[29]

Rhodes Z,Li M.Electrochemical advances in non-aqueous redox flow batteries.Isr J Chem2021;61:101-12

[30]

Kortekaas L,Korshunov A,Winter M.Building bridges: unifying design and development aspects for advancing non-aqueous redox-flow batteries.Batteries2023;9:4

[31]

Winsberg J,Janoschka T,Schubert US.Redox-flow batteries: from metals to organic redox-active materials.Angew Chem Int Ed2017;56:686-711 PMCID:PMC5248651

[32]

Kim J,Yoo J,Ko Y.Organic batteries for a greener rechargeable world.Nat Rev Mater2023;8:54-70

[33]

Ding Y,Zhang L,Yu G.Molecular engineering of organic electroactive materials for redox flow batteries.Chem Soc Rev2018;47:69-103

[34]

Shrestha A,Sigman MS,Sanford MS.Realization of an asymmetric non-aqueous redox flow battery through molecular design to minimize active species crossover and decomposition.Chemistry2020;26:5369-73

[35]

Perry ML,Darling RM.Crossover mitigation strategies for redox-flow batteries.Curr Opin Electrochem2020;21:311-8

[36]

Doris SE,Baskin A.Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries.Angew Chem Int Ed2017;56:1595-9

[37]

Hendriks KH,Braten MN.High-performance oligomeric catholytes for effective macromolecular separation in nonaqueous redox flow batteries.ACS Cent Sci2018;4:189-96 PMCID:PMC5833001

[38]

Tsehaye MT,Schmidt TJ.Towards optimized membranes for aqueous organic redox flow batteries: correlation between membrane properties and cell performance.Renew Sustain Energy Rev2023;173:113059

[39]

Robb BH,Davis CM.Sulfonated diels-alder poly(phenylene) membrane for efficient ion-selective transport in aqueous metalorganic and organic redox flow batteries.J Electrochem Soc2023;170:030515

[40]

Mazumder MMR,Minteer SD.Phenyl acrylate-based cross-linked anion exchange membranes for non-aqueous redox flow batteries.ACS Mater Au2023;3:557-68 PMCID:PMC10510496

[41]

Navalpotro P,Trujillo C,Palma J.Exploring the versatility of membrane-free battery concept using different combinations of immiscible redox electrolytes.ACS Appl Mater Interfaces2018;10:41246-56

[42]

Potash RA,Conte S.On the benefits of a symmetric redox flow battery.J Electrochem Soc2016;163:A338-44

[43]

Janoschka T,Hager MD,Schubert US.An approach toward replacing vanadium: a single organic molecule for the anode and cathode of an aqueous redox-flow battery.ChemistryOpen2017;6:216-20 PMCID:PMC5390812

[44]

Chen R.Redox flow batteries: mitigating cross-contamination via bipolar redox-active materials and bipolar membranes.Curr Opin Electrochem2023;37:101188

[45]

Li M,Minteer SD.Bipolar redox-active molecules in non-aqueous organic redox flow batteries: status and challenges.ChemElectroChem2021;8:1215-32

[46]

Kosswattaarachchi AM,Cook TR.Characterization of a BODIPY dye as an active species for redox flow batteries.ChemSusChem2016;9:3317-23

[47]

Ma T,Miao L.Porphyrin-based symmetric redox-flow batteries towards cold-climate energy storage.Angew Chem2018;130:3212-6

[48]

Geysens P,Vankelecom I,Binnemans K.Highly soluble 1,4-diaminoanthraquinone derivative for nonaqueous symmetric redox flow batteries.ACS Sustain Chem Eng2020;8:3832-43

[49]

Tracy JS,Roytman VA.Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.Chem Sci2022;13:10806-14 PMCID:PMC9491095

[50]

Liu Y,Chen Y.Effective design strategy of small bipolar molecules through fused conjugation toward 2.5 V based redox flow batteries.ACS Energy Lett2022;7:1274-83 PMCID:PMC9097584

[51]

Steen JS,Eiva V.Blatter radicals as bipolar materials for symmetrical redox-flow batteries.J Am Chem Soc2022;144:5051-8 PMCID:PMC8949756

[52]

Hagemann T,Häupler B.A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery.NPG Asia Mater2017;9:e340

[53]

Hwang S,Ryu JH.N-ferrocenylphthalimide; A single redox couple formed by attaching a ferrocene moiety to phthalimide for non-aqueous flow batteries.J Power Sources2018;395:60-5

[54]

Friedl J,Porfyrakis K,Chamberlain TW.All-fullerene-based cells for nonaqueous redox flow batteries.J Am Chem Soc2018;140:401-5

[55]

Hwang S,Ryu JH.N-(α-ferrocenyl)ethylphthalimide as a single redox couple for non-aqueous flow batteries.J Power Sources2019;421:1-5

[56]

Zhen Y,Yuan J,Li Y.Ferrocene/anthraquinone based bi-redox molecule for symmetric nonaqueous redox flow battery.J Power Sources2020;480:229132

[57]

Xu D,Zhen Y.Ferrocene/phthalimide ionic bipolar redox-active molecule for symmetric nonaqueous redox flow batteries.ACS Appl Energy Mater2021;4:8045-51

[58]

Liu B,Sheong FK,Zhao T.Artificial bipolar redox-active molecule for symmetric nonaqueous redox flow batteries.ACS Sustain Chem Eng2022;10:613-21

[59]

Nambafu GS,Bin Shahid U.Pyromellitic diimide based bipolar molecule for total organic symmetric redox flow battery.Nano Energy2022;94:106963

[60]

Etkind SI,Zhu YG.Thianthrene-based bipolar redox-active molecules toward symmetric all-organic batteries.ACS Sustain Chem Eng2022;10:11739-50

[61]

Duan W,Milshtein JD.A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR.J Mater Chem A2016;4:5448-56

[62]

Charlton GD,Gilroy JB.A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery.J Energy Chem2019;34:52-6

[63]

Armstrong CG,Toghill KE.Application of the dianion croconate violet for symmetric organic non-aqueous redox flow battery electrolytes.J Power Sources2019;440:227037

[64]

Raihan M, Dyker CA. Ester-substituted bispyridinylidenes: double concerted two-electron bipolar molecules for symmetric organic redox flow batteries.ACS Energy Lett2023;8:3314-22

[65]

Winsberg J,Muench S,Hager MD.TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries.ACS Energy Lett2016;1:976-80

[66]

Dmello R,Brushett FR.Cost-driven materials selection criteria for redox flow battery electrolytes.J Power Sources2016;330:261-72

[67]

Sentyurin VV,Magdesieva TV.Molecular design of ambipolar redox-active molecules II: closed-shell systems.Curr Opin Electrochem2020;24:6-14

[68]

Sentyurin VV,Magdesieva TV.Molecular design of ambipolar redox-active open-shell molecules: principles and implementations.Curr Opin Electrochem2020;24:15-23

[69]

Steen JS,Hjelm J.Bipolar verdazyl radicals for symmetrical batteries: properties and stability in all states of charge.Chemphyschem2023;24:e202200779

[70]

Broere DL,van der Vlugt JI.New avenues for ligand-mediated processes--expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands.Chem Soc Rev2015;44:6886-915

[71]

Romero NA.Organic photoredox catalysis.Chem Rev2016;116:10075-166

[72]

Laursen BW,Nielsen MF,Christensen JB.2,6,10-Tris(dialkylamino)trioxatriangulenium ions. Synthesis, structure, and properties of exceptionally stable carbenium ions.J Am Chem Soc1998;120:12255-63

[73]

Nicolas C.Triazatriangulenium cations: highly stable carbocations for phase-transfer catalysis.Org Lett2006;8:4343-6

[74]

Goodman H,Gianetti TL.Molecular orbital insights of transition metal-stabilized carbocations.Front Chem2019;7:365 PMCID:PMC6558042

[75]

Wilkins LC,Litle ED.Stabilized carbenium ions as latent, Z-type ligands.Angew Chem Int Ed2019;131:18434-8

[76]

Mei L,Bloch J.Tunable carbocation-based redox active ambiphilic ligands: synthesis, coordination and characterization.Dalton Trans2020;49:16095-105

[77]

Litle ED,Gabbaï FP.Ligand-enforced intimacy between a gold cation and a carbenium ion: impact on stability and reactivity.Chem Sci2021;12:3929-36 PMCID:PMC8179465

[78]

Karimi M,Dorsey CL,Lajeune S.Bifunctional carbenium dications as metal-free catalysts for the reduction of oxygen.J Am Chem Soc2020;142:13651-6

[79]

Shaikh AC,Moutet J.Trioxatriangulenium (TOTA+) as a robust carbon-based Lewis acid in frustrated Lewis pair chemistry.Chem Sci2021;12:4841-9 PMCID:PMC8179643

[80]

Mei L,Gianetti TL.Helical carbenium ion: a versatile organic photoredox catalyst for red-light-mediated reactions.J Am Chem Soc2020;142:12056-61

[81]

Mei L.Helical carbenium ion-based organic photoredox catalyst: a versatile and sustainable option in red-light-induced reactions.Synlett2021;32:337-4

[82]

Mei L,Stull SM.Synthesis of CF3-containing spirocyclic indolines via a red-light-mediated trifluoromethylation/dearomatization cascade.J Org Chem2021;86:10640-53

[83]

Hossain MM,Moutet J.Photocatalytic α-arylation of cyclic ketones.Nat Synth2022;1:147-57

[84]

Nowack MH,Laursen BW.Triangulenium ions: versatile organic photoredox catalysts for green-light-mediated reactions.Synlett2024;35:307-12

[85]

Singh PP,Srivastava V.Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications.RSC Adv2023;13:10958-86 PMCID:PMC10077514

[86]

Žurauskas J,Wu S.Electron-poor acridones and acridiniums as super photooxidants in molecular photoelectrochemistry by unusual mechanisms.Angew Chem Int Ed2023;62:e202307550

[87]

Moutet J,Mills DD,Laursen BW.Planar carbenium ions for robust symmetrical all organic redox flow batteries.Mater Adv2023;4:4598-606

[88]

Bosson J,Laursen BW.Chapter 4: cationic triarylcarbenium helicenes: synthesis, resolution, and applications. Weinheim, Germany: Wiley; 2022. pp. 127-65.

[89]

Herse C,Krebs FC.A highly configurationally stable [4]heterohelicenium cation.Angew Chem Int Ed2003;42:3162-6

[90]

Laleu B,Herse C.Resolution of [4]heterohelicenium dyes with unprecedented Pummerer-like chemistry.Angew Chem Int Ed2005;44:1879-83

[91]

Kel O,Mehanna N,Lacour J.Excited-state properties of chiral [4]helicene cations.Photochem Photobiol Sci2012;11:623-31

[92]

Bosson J,Lacour J.Cationic triangulenes and helicenes: synthesis, chemical stability, optical properties and extended applications of these unusual dyes.Chem Soc Rev2014;43:2824-40

[93]

Wallabregue A,Guin J,Vauthey E.Modular synthesis of pH-sensitive fluorescent diaza[4]helicenes.Eur J Org Chem2014;2014:6431-8

[94]

Delgado IH,Wallabregue A.Functionalized cationic [4]helicenes with unique tuning of absorption, fluorescence and chiroptical properties up to the far-red range.Chem Sci2016;7:4685-93 PMCID:PMC5772034

[95]

Li H,Wallabregue A.Efficient annihilation electrochemiluminescence of cationic helicene luminophores.ChemElectroChem2017;4:1750-6

[96]

Tarrieu R,Zinna F.Hybrids of cationic [4]helicene and N-heterocyclic carbene as ligands for complexes exhibiting (chir)optical properties in the far red spectral window.Chem Commun2021;57:3793-6

[97]

Sørensen TJ,Laursen BW.Synthesis and Stability of N,N′-Dialkyl-1,13-dimethoxyquinacridinium (DMQA+): a [4]helicene with multiple redox states.ChemPlusChem2014;79:1030-5

[98]

Shaikh AC,Veleta JM.Persistent, highly localized, and tunable [4]helicene radicals.Chem Sci2020;11:11060-7 PMCID:PMC8162278

[99]

Moutet J,Gianetti TL.Symmetric, robust, and high-voltage organic redox flow battery model based on a helical carbenium ion electrolyte.ACS Appl Energy Mater2021;4:9-14

[100]

Moutet J,Hossain MM.Increased performance of an all-organic redox flow battery model via nitration of the [4]helicenium DMQA ion electrolyte.Mater Adv2022;3:216-23

[101]

Yan Y,Sigman MS.Mechanism-based design of a high-potential catholyte enables a 3.2 V all-organic nonaqueous redox flow battery.J Am Chem Soc2019;141:15301-6

[102]

Antoni PW,Hansmann MM.Organic redox systems based on pyridinium-carbene hybrids.J Am Chem Soc2019;141:9701-11

[103]

Mobian P,Francotte E,Lacour J.Synthesis, resolution, and VCD analysis of an enantiopure diazaoxatricornan derivative.J Am Chem Soc2008;130:6507-14

[104]

Gong K,Gu S,Yan Y.Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs.Energy Environ Sci2015;8:3515-30

[105]

Korshunov A,Grünebaum M,Winter M.An oxo-verdazyl radical for a symmetrical non-aqueous redox flow battery.J Mater Chem A2020;8:22280-91

[106]

Laursen BW.Synthesis of super stable triangulenium dye.J Org Chem2009;74:3183-5

[107]

Bisballe N.What is best strategy for water soluble fluorescence dyes? A case study using long fluorescence lifetime DAOTA dyes.Chemistry2020;26:15969-76

[108]

Moutet J,Lozier DL.[4]helicenium ion as bipolar redox material for symmetrical fully organic pole-less redox flow battery.Batteries Supercaps2024;e202300519

[109]

Helicenes: synthesis, properties and applications. Crassous J, Stará IG, Starý I, editors. Weinheim, Germany: Wiley; 2022. pp. 1-542.

[110]

Torricelli F,Besnard C,Bürgi T.Modular synthesis, orthogonal post-functionalization, absorption, and chiroptical properties of cationic [6]helicenes.Angew Chem Int Ed2013;52:1796-800

[111]

Yao Y,Shi Y,Lu Y.Assessment methods and performance metrics for redox flow batteries.Nat Energy2021;6:582-8

[112]

Wang H,Luber EJ.Redox flow batteries: how to determine electrochemical kinetic parameters.ACS Nano2020;14:2575-84

[113]

Nicholson RS.Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics.Anal Chem1965;37:1351-5

[114]

Lavagnini I,Magno F.An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data.Electroanalysis2004;16:505-6

[115]

Cavallotti C,Rota R.On the mechanism of decomposition of the benzyl radical.Proc Combust Inst2009;32:115-21

[116]

Yao Z,Johnston A.Machine learning for a sustainable energy future.Nat Rev Mater2023;8:202-15 PMCID:PMC9579620

[117]

Ling C.A review of the recent progress in battery informatics.NPJ Comput Mater2022;8:33

PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

/