Active sites-rich zeolitic imidazolate framework/MXene heterostructure modified separator with improved Li+ transport for high-performance Li-S batteries
Leiping Liao , Huanhuan Duan , Guohua Chen , Yuanfu Deng
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400025
Active sites-rich zeolitic imidazolate framework/MXene heterostructure modified separator with improved Li+ transport for high-performance Li-S batteries
The inevitable shuttling of lithium polysulfides (LiPSs) and poor redox kinetics restrict real-world applications of lithium-sulfur (Li-S) batteries, although they have been paid plentiful attention. Herein, a thin and multifunctional heterostructure (ZIF-L/MXene), consisting of leaf-like zeolitic imidazolate framework sheets (ZIF-L) and two-dimensional layered Ti3C2Tx MXene nanosheets, is developed for modification of polyolefin-based separators. A good combination of the merits of the ZIF-L and MXene can hinder the restacking of MXene nanosheets and achieve a large specific surface area, thus exposing plentiful active sites for adsorption and catalytic reaction of LiPSs. Taking these obviously synergistic effects, the ZIF-L/MXene heterostructure modified separators not only alleviate the shuttling of LiPSs but also promote their kinetics conversion. Furthermore, with an improved electrolyte affinity, the ZIF-L/MXene modified separators can accelerate the transport of Li+. Thus, the modified separator endows a Li-S cell with an admirable discharge capacity of 1371.7 mAh g-1 at 0.2 C and favorable cycling stability, with a slow capacity decay ratio of 0.075% per cycle during 500 cycles. Even under a sulfur loading of ~ 4.1 mg cm-2, the Li-S battery can achieve an excellent capacity of 990.6 mAh g-1 at 0.1 C and maintain an excellent cycling performance. The novel ZIF-L/MXene heterostructure modified separator in this work can provide an alternative strategy for designing thin and light separators for high-performance Li-S batteries, via the enhancement of redox kinetics and reduction of shuttling of the LiPSs.
Li-S batteries, zeolitic imidazolate framework, MXene / separators, synergistic effects
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
C(, Cui L, Abdolhosseinzadeh S, Heier J. Two-dimensional MXenes for lithium-sulfur batteries.InfoMat2020;2:613-38 |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
/
| 〈 |
|
〉 |