Recent advances in nanoscale engineering of Pd-based electrocatalysts for selective CO2 electroreduction to formic acid/formate

Shangqing Sun , Yalan Mao , Fang Liu , Shukang Zhang , Yidan Sun , Qiang Gao , Xiaojing Liu

Energy Materials ›› 2024, Vol. 4 ›› Issue (2) : 400027

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (2) :400027 DOI: 10.20517/energymater.2023.88
Review

Recent advances in nanoscale engineering of Pd-based electrocatalysts for selective CO2 electroreduction to formic acid/formate

Author information +
History +
PDF

Abstract

Electrochemical conversion of carbon dioxide (CO2) into high-value chemicals and fuels driven by electricity derived from renewable energy has been recognized as a promising strategy to achieve carbon neutrality and create sustainable energy. Particularly from the viewpoint of the product values and the economic viability, selective CO2 reduction to formic acid/formate has shown great promise. Palladium (Pd) has been demonstrated as the only metal that can produce formic acid/formate perfectly near the equilibrium potential; yet, it still suffers from CO poisoning, poor stability and competitive CO pathway at high overpotentials. Herein, recent progress of Pd-based electrocatalysts for selective CO2 electroreduction and their mechanistic understanding are reviewed. First, the fundamentals of electrochemical CO2 reduction and the reaction pathway of formic acid/formate on Pd are presented. Then, recent advances in the rational design and nanoscale engineering strategies of Pd-based electrocatalysts for further improving CO2 reduction activity and selectivity to formic acid/formate product, including size control, morphology and shape control, alloying, heteroatom doping, surface-strain engineering, and phase control, are discussed from the perspectives of both experimental and computational aspects. Finally, we discuss the pertinent challenges and describe the future prospects and opportunities in terms of the development of electrocatalysts, electrolyzers and characterization techniques in this research field.

Keywords

Electrochemical CO2 reduction / formic acid/formate / Pd-based catalysts / nanoscale engineering / electrocatalysis

Cite this article

Download citation ▾
Shangqing Sun, Yalan Mao, Fang Liu, Shukang Zhang, Yidan Sun, Qiang Gao, Xiaojing Liu. Recent advances in nanoscale engineering of Pd-based electrocatalysts for selective CO2 electroreduction to formic acid/formate. Energy Materials, 2024, 4(2): 400027 DOI:10.20517/energymater.2023.88

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes?.Science2019;364:eaav3506

[2]

Bushuyev OS,Dinh CT.What should we make with CO2 and how can we make it?.Joule2018;2:825-32

[3]

Sa YJ,Lee SY,Lee U.Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction.Chem Soc Rev2020;49:6632-65

[4]

Lei Y,Bao A.Recent advances on electrocatalytic CO2 reduction to resources: target products, reaction pathways and typical catalysts.Chem Eng J2023;453:139663

[5]

Shakun JD,He F.Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation.Nature2012;484:49-54

[6]

Khezri B,Pumera M.CO2 reduction: the quest for electrocatalytic materials.J Mater Chem A2017;5:8230-46

[7]

Tanvir RU,Canter T,Lu J.Harnessing solar energy using phototrophic microorganisms: a sustainable pathway to bioenergy, biomaterials, and environmental solutions.Renew Sustain Energy Rev2021;146:1-111181 PMCID:PMC8437043

[8]

Zhu DD,Qiao SZ.Recent Advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide.Adv Mater2016;28:3423-52

[9]

Zhu S,Li T.Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction.Adv Mater2021;33:e2005484

[10]

Wang Y,Ge B.Additives enhancing supported amines performance in CO2 capture from air.SusMat2023;3:416-30

[11]

Gu Z,Shang L,Qian L.Nanostructured copper-based electrocatalysts for CO2 reduction.Small Methods2018;2:1800121

[12]

Liu C,Sakimoto KK.Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals.Nano Lett2015;15:3634-9 PMCID:PMC5812269

[13]

Lu Q,Zhou Y.A selective and efficient electrocatalyst for carbon dioxide reduction.Nat Commun2014;5:3242

[14]

Qiao J,Hong F.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.Chem Soc Rev2014;43:631-75

[15]

Li Z,Wang J.Stabilizing highly active atomically dispersed NiN4Cl sites by Cl-doping for CO2 electroreduction.SusMat2023;3:498-509

[16]

Liu S,Wang Y.Surface-oxygen-rich Bi@C nanoparticles for high-efficiency electroreduction of CO2 to formate.Nano Lett2022;22:9107-14

[17]

Şahin NE,Arrii S,Kokoh KB.CO2-to-HCOOH electrochemical conversion on nanostructured CuxPd100-x/carbon catalysts.ChemElectroChem2021;8:1362-8

[18]

Sun Y,Wang X.Highly selective CO2 electroreduction to CO by the synergy between Ni-N-C and encapsulated Ni nanoparticles.Dalton Trans2023;52:928-35

[19]

Frese KW.Electrochemical reduction of carbon dioxide to methane, methanol, and  CO  on Ru electrodes.J Electrochem Soc1985;132:259-60

[20]

Wang P,Tang C.Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling.Nat Commun2022;13:3754 PMCID:PMC9243136

[21]

Zhang H,Raciti D.Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O.Nat Catal2023;6:807-17

[22]

De R,Paul S.Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex.Angew Chem Int Ed2020;132:10614-21

[23]

Liu X,Sun Y.Upgrading CO2 into acetate on Bi2O3@carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis.SusMat2023;3:235-47

[24]

Zhang H,Wang Y,Huang H.In situ oxidative etching-enabled synthesis of hollow Cu2O nanocrystals for efficient CO2 RR into C2+ products.Sustain Energy Fuels2022;6:4860-5

[25]

Han N,He L,Li Y.Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate.Adv Energy Mater2020;10:1902338

[26]

Jouny M,Jiao F.General techno-economic analysis of CO2 electrolysis systems.Ind Eng Chem Res2018;57:2165-77

[27]

Calle-Vallejo F.Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes.Angew Chem Int Ed2013;52:7282-5

[28]

Schreier M,Gao P,Mayer MT.Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction.J Am Chem Soc2016;138:1938-46

[29]

Hori Y,Koga O.Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes.J Phys Chem B2002;106:15-7

[30]

Wulan B,Tan D.To stabilize oxygen on In/In2O3 heterostructure via joule heating for efficient electrocatalytic CO2 reduction.Adv Funct Mater2022;33:2209114

[31]

Bai X,Zhao C.Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy.Angew Chem Int Ed2017;56:12219-23

[32]

Li P,Li J.Nanoscale engineering of P-block metal-based catalysts toward industrial-scale electrochemical reduction of CO2.Adv Energy Mater2023;13:2301597

[33]

Chen Z,Wang L.Ag@Pd bimetallic structures for enhanced electrocatalytic CO2 conversion to CO: an interplay between the strain effect and ligand effect.Nanoscale2022;14:11187-96

[34]

Xie L,Huang F.Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets.Chin J Catal2022;43:1680-6

[35]

Goswami C,Das R.CeO2 promotes electrocatalytic formic acid oxidation of Pd-based alloys.J Alloys Compd2023;948:169665

[36]

Liu M,Wang Z.Size-controlled palladium nanoparticles encapsulated in silicalite-1 for methane catalytic combustion.ACS Appl Nano Mater2023;6:3637-46

[37]

Ma K,Shi W.Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO.J Catal2022;407:104-14

[38]

Liu G,Zhang X.CO2 hydrogenation to formate and formic acid by bimetallic palladium-copper hydride clusters.J Am Chem Soc2020;142:7930-6

[39]

Gao D,Cai F.Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles.Nano Res2017;10:2181-91

[40]

Zhou Y,Zhu X.Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate.Adv Mater2020;32:e2000992

[41]

Zhou R,Ke X.Two-dimensional palladium-copper alloy nanodendrites for highly stable and selective electrochemical formate production.Nano Lett2021;21:4092-8

[42]

Chang X,Gong J.CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts.Energy Environ Sci2016;9:2177-96

[43]

Jiao L,Wan G.Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures.Angew Chem Int Ed2020;59:20589-95

[44]

Appel AM,Bocarsly AB.Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation.Chem Rev2013;113:6621-58 PMCID:PMC3895110

[45]

Torrente-murciano L,Jones M.Formation of hydrocarbons via CO2 hydrogenation - a thermodynamic study.J CO2 Util2014;6:34-9

[46]

Wu J,Harris BH.Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode.J Power Sources2014;258:189-94

[47]

Tekalgne MA,Hasani A.Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction.Mater Today Adv2020;5:100038

[48]

Zhang W,Ma L.Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals.Adv Sci2018;5:1700275 PMCID:PMC5770696

[49]

Kuang Y,Ge L.High-concentration electrosynthesis of formic acid/formate from CO2: reactor and electrode design strategies.Energy Environ Mate2023;6:e12596

[50]

Durand WJ,Studt F,Nørskov JK.Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces.Surf Sci2011;605:1354-9

[51]

Kyriacou G.Electrochemical reduction of CO2 at Cu + Au electrodes.J Electroanal Chem1992;328:233-43

[52]

Koga O.Reduction of adsorbed Co on a Ni electrode in connection with the electrochemical reduction of CO2.Electrochim Acta1993;38:1391-4

[53]

Kostecki R.Electrochemical reduction of CO2 at an activated silver electrode.Ber Bunsenges Phys Chem1994;98:1510-5

[54]

Murata A.Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu Electrode.Bull Chem Soc Jpn1991;64:123-7

[55]

Saha P,Dey A.Selectivity in electrochemical CO2 reduction.ACC Chem Res2022;55:134-44

[56]

Ulissi ZW,Xiao J.Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction.ACS Catal2017;7:6600-8

[57]

Nie X,Janik MJ.Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory.J Catal2014;312:108-22

[58]

Wu J,Ye W.CO2 reduction: from the electrochemical to photochemical approach.Adv Sci2017;4:1700194 PMCID:PMC5700640

[59]

Rosen J,Lu Q.Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces.ACS Catal2015;5:4293-9

[60]

Montoya JH,Chan K.Theoretical insights into a CO dimerization mechanism in CO2 electroreduction.J Phys Chem Lett2015;6:2032-7

[61]

Hori Y,Suzuki S.Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution.Chem Lett1985;14:1695-8

[62]

Kuhl KP,Abram DN.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces.Energy Environ Sci2012;5:7050

[63]

Gao D,Cai F,Wang G.Pd-containing nanostructures for electrochemical CO2 reduction reaction.ACS Catal2018;8:1510-9

[64]

Diercks JS,Georgi M.Interplay between surface-adsorbed CO and bulk Pd hydride under CO2 -electroreduction conditions.ACS Catal2022;12:10727-41

[65]

Rahaman M,Broekmann P.Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials.ChemSusChem2017;10:1733-41

[66]

Lv H,Qin H.Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemical CO2 reduction.CCS Chem2022;4:1376-85

[67]

Klinkova A,Dinh C.Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate.ACS Catal2016;6:8115-20

[68]

Han N,Zhou Y.Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate.Adv Mater2021;33:e2005821

[69]

Sun Y,Liu F.Accelerating Pd electrocatalysis for CO2-to-formate conversion across a wide potential window by optimized incorporation of Cu.ACS Appl Mater Interfaces2022;14:8896-905

[70]

Chatterjee S,Hart JL.Free standing nanoporous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO2 to formate.ACS Catal2019;9:5290-301

[71]

Guo S,Murphy E.Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance.Appl Catal B2022;316:121659

[72]

Jiang B,Jiang K,Cai WB.Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces.J Am Chem Soc2018;140:2880-9

[73]

Bok J,Lee BH.Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate.J Am Chem Soc2021;143:5386-95

[74]

Jia L,Xu J.Phase-dependent electrocatalytic CO2 reduction on Pd3 Bi nanocrystals.Angew Chem Int Ed2021;60:21741-5

[75]

Ma J,Zhang Q,Zhang J.Exploring the size effect of Pt nanoparticles on the photocatalytic nonoxidative coupling of methane.ACS Catal2021;11:3352-60

[76]

Yao Z,Cheng T.Anomalous size effect of Pt ultrathin nanowires on oxygen reduction reaction.Nano Lett2021;21:9354-60

[77]

Cao Z,Hong D.A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction.J Am Chem Soc2016;138:8120-5

[78]

Dong C,Hu S.Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles.Nat Commun2018;9:1252 PMCID:PMC5871894

[79]

Mayrhofer KJ,Arenz M,Ross PN.The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis.J Phys Chem B2005;109:14433-40

[80]

Wu T,Xu ZJ.Size effects of electrocatalysts: more than a variation of surface area.ACS Nano2022;16:8531-9

[81]

Yang P,Zhao Z.Reveal the nature of particle size effect for CO2 reduction over Pd and Au.Chin J Catal2021;42:817-23

[82]

Gao D,Wang J.Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles.J Am Chem Soc2015;137:4288-91

[83]

Zhu W,Yang P.Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance.Angew Chem Int Ed2018;57:11544-8

[84]

Cao C,Zhu Q.Ultrathin two-dimensional metallenes for heterogeneous catalysis.Chem Catal2022;2:693-723

[85]

Xu H,Wang C.Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis.Small2021;17:e2005092

[86]

Liu M,Zhang B.Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration.Nature2016;537:382-6

[87]

Zhang X,Li H.Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide.Adv Energy Mater2022;12:2201461

[88]

Xia Y,Lim B.Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?.Angew Chem Int Ed2009;48:60-103 PMCID:PMC2791829

[89]

Li F,Medvedev JJ.Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts.Nat Catal2021;4:479-87

[90]

Xiao C,Xue P.High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts.Joule2020;4:2562-98

[91]

Tang Y,Wu Y.High-indexed intermetallic Pt3Sn nanozymes with high activity and specificity for sensitive immunoassay.Nano Lett2023;23:267-75

[92]

Hall AS,Wuttig A.Mesostructure-induced selectivity in CO2 reduction catalysis.J Am Chem Soc2015;137:14834-7

[93]

Liang J,Liu X.Molybdenum-doped ordered L10 -PdZn nanosheets for enhanced oxygen reduction electrocatalysis.SusMat2022;2:347-56

[94]

Gunji T,Ohira T,Nakajima Y.Preparation of various Pd-based alloys for electrocatalytic CO2 reduction reaction - selectivity depending on secondary elements.Chem Mater2020;32:6855-63

[95]

Lu D,Guo D.Challenges and opportunities in 2D high-entropy alloy electrocatalysts for sustainable energy conversion.SusMat2023;3:730-48

[96]

Yang S,Cui X.High C-C cleavage efficiencies of ethanol oxidation reaction on mesoporous RhPt electrocatalysts.SusMat2022;2:689-98

[97]

Proietto F,Galia A.Electrochemical conversion of CO2 to formic acid using a Sn based electrode: a critical review on the state-of-the-art technologies and their potential.Electrochim Acta2021;389:138753

[98]

Gao N,Ding J.Intercalated gold nanoparticle in 2D palladium nanosheet avoiding CO poisoning for formate production under a wide potential window.ACS Appl Mater Interfaces2022;14:10344-52

[99]

Kim D,Yu Y,Yang P.Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles.Nat Commun2014;5:4948

[100]

Dong J,Li Y.Abundant (110) facets on PdCu3 alloy promote electrochemical conversion of CO2 to CO.ACS Appl Mater Interfaces2022;14:41969-77

[101]

Bao K,Wu J.Super-branched PdCu alloy for efficiently converting carbon dioxide to carbon monoxide.Nanomaterials2023;13:603 PMCID:PMC9921487

[102]

Huang W,Liu J.Efficient and selective CO2 reduction to formate on Pd-doped Pb3(CO3)2(OH)2: dynamic catalyst reconstruction and accelerated CO2 protonation.Small2022;18:e2107885

[103]

Li H,Qiu Y.Selective electroreduction of CO2 to formate over the co-electrodeposited Cu/Sn bimetallic catalyst.Mater Today Energy2021;21:100797

[104]

Liu S,Tao H.Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO.Nano Energy2018;45:456-62

[105]

Xie H,Liang J,Sun S.Cu-based nanocatalysts for electrochemical reduction of CO2.Nano Today2018;21:41-54

[106]

Chen Z,Chen S.Facile synthesis of platinum-copper aerogels for the oxygen reduction reaction.Energy Mater2022;2:200033

[107]

Jiang T,Ma X.Spectrometric study of electrochemical CO2 reduction on Pd and Pd-B electrodes.ACS Catal2021;11:840-8

[108]

Wei K,Ge J.PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement.Energy Mater2023;3

[109]

Liu S,Ren T.Interface engineering and boron modification of Pd-B/Pd hetero-metallene synergistically accelerate oxygen reduction catalysis.Small2023;19:e2306014

[110]

Lv H,Sun L.Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis.ACS Nano2019;13:12052-61

[111]

Jiang T,Zhao Z,Wang Z.Regulating the intermediate affinity on Pd nanoparticles through the control of inserted-B atoms for alkaline hydrogen evolution.Chem Eng J2022;433:133525

[112]

Lin B,Xie L.Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides.Angew Chem Int Ed2020;59:20348-52

[113]

Li H,Zhang X,Cai W.Boron-doped platinum-group metals in electrocatalysis: a perspective.ACS Catal2022;12:12750-64

[114]

Wang H,Liu S.B-doping-induced lattice expansion of Pd metallene nanoribbons for oxygen reduction reaction.Inorg Chem2023;62:15157-63

[115]

Mao Z,Liu X.Interstitial B-doping in Pt lattice to upgrade oxygen electroreduction performance.ACS Catal2022;12:8848-56

[116]

Shen T,Zhao T,Wang D.Recent advances of single-atom-alloy for energy electrocatalysis.Adv Energy Mater2022;12:2201823

[117]

Yang X,Tong X.Strain engineering in electrocatalysts: fundamentals, progress, and perspectives.Adv Energy Mater2022;12:2102261

[118]

Xia Z.Strain engineering of metal-based nanomaterials for energy electrocatalysis.Chem Soc Rev2019;48:3265-78

[119]

Jiang K,Zou S.Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications.Phys Chem Chem Phys2014;16:20360-76

[120]

Shao Q,Liu S.Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction.J Mater Chem A2019;7:20478-93

[121]

He T,Shi F.Mastering the surface strain of platinum catalysts for efficient electrocatalysis.Nature2021;598:76-81

[122]

Luo M.Strain-controlled electrocatalysis on multimetallic nanomaterials.Nat Rev Mater2017;2:17059

[123]

Yan Y,Gilroy KD,Xia Y.Intermetallic nanocrystals: syntheses and catalytic applications.Adv Mater2017;29:1605997

[124]

Li J.Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis.Acc Chem Res2019;52:2015-25

[125]

Zhou M,Fang J.Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications.Chem Rev2021;121:736-95

[126]

Zeng Y,Li C.Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt.J Am Chem Soc2023;145:17643-55

[127]

Feng S,Liu H.Targeted intermetallic nanocatalysts for sustainable biomass and CO2 valorization.ACS Catal2022;12:14999-5020

[128]

Zhou F,Fournier M.Electrocatalytic CO2 reduction to formate at low overpotentials on electrodeposited Pd films: stabilized performance by suppression of CO formation.ChemSusChem2017;10:1509-16

[129]

Hou Y,Widmer R.Synthesis and characterization of degradation-resistant Cu@CuPd nanowire catalysts for the efficient production of formate and CO from CO2.ChemElectroChem2019;6:3189-98

[130]

Yin Z,Xie Z.Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene.J Am Chem Soc2022;144:20931-8

[131]

Kim D,Lee HW.Electrocatalytic reduction of low concentrations of CO2 gas in a membrane electrode assembly electrolyzer.ACS Energy Lett2021;6:3488-95

[132]

Ge L,Li M.Electrochemical CO2 reduction in membrane-electrode assemblies.Chem2022;8:663-92

[133]

Zhang Z,Chen Z.Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application.Angew Chem Int Ed2023;62:e202302789

[134]

Dattila F,Zhou Y.Modeling operando electrochemical CO2 reduction.Chem Rev2022;122:11085-130

[135]

Deng Y.Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando raman spectroscopy.ACS Catal2017;7:7873-89

PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

/