Evolved photovoltaic performance of MAPbI3 and FAPbI3-based perovskite solar cells in low-temperatures

Youcheng Xu , Ziyi Wu , Ziling Zhang , Xin Li , Hong Lin

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400034

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400034 DOI: 10.20517/energymater.2023.86
Article

Evolved photovoltaic performance of MAPbI3 and FAPbI3-based perovskite solar cells in low-temperatures

Author information +
History +
PDF

Abstract

Organic-inorganic hybrid perovskites have emerged as an up-and-coming contender for photovoltaic devices owing to their exceptional photovoltaic properties. However, current research predominantly concentrates on their performance under ambient conditions at room temperature. In this work, we delve into the novel territory by investigating MAPbI3-based and FAPbI3-based perovskite solar cells (PSCs) in the temperature range of 300 to 150 K. Remarkable efficiency enhancements of nearly 5% and 20% were obtained at 250 and 210 K, respectively. However, further decreasing the temperature impairs the photovoltaic performance. We propose an underlying mechanism influencing the performance change in perovskite devices at low temperatures by examining the temperature-dependent ultraviolet-visible and photoluminescence spectra results. At the beginning of the cooling process, from 300 to 250 K for MAPbI3 and from 300 to 210 K for FAPbI3, the performance enhancement stems primarily from the enhanced open-circuit voltage by the tuned band gap of the perovskite films. Further lowering the temperature would change the perovskite structure, impairing the performance of PSCs. FAPbI3-based PSCs show a better tolerance in low temperatures owing to the more stable perovskite crystal structure. The present findings offer valuable theoretical guidance for preparing outstanding PSCs for low-temperature applications.

Keywords

Perovskite solar cells / low temperature / phase transition / defective state / carrier trapping

Cite this article

Download citation ▾
Youcheng Xu, Ziyi Wu, Ziling Zhang, Xin Li, Hong Lin. Evolved photovoltaic performance of MAPbI3 and FAPbI3-based perovskite solar cells in low-temperatures. Energy Materials, 2024, 4(3): 400034 DOI:10.20517/energymater.2023.86

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao D,Wang C.Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells.Nat Energy2017;2:17018

[2]

Weber D.CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure.Zeitschrift für Naturforschung B1978;33:1443-5

[3]

Min H,Kim J.Perovskite solar cells with atomically coherent interlayers on SnO- electrodes.Nature2021;598:444-50

[4]

Xia Y,Qin L.Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells.Energy Mater2023;3:300004

[5]

Lu YN,Yu Y.Constructing an n/n+ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics.Energy Environ Sci2021;14:4048-58

[6]

Sasaki K,Nakaido K,Onitsuka R.Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells.AIP Conf Proc2013;1556:22-5

[7]

Haase F,Schäfer S.Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells.Sol Energy Mater Sol Cells2018;186:184-93

[8]

Chen Y,Li N.Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics.Joule2020;4:1961-76

[9]

Izydorczyk W,Izydorczyk J.Electrical and optical properties of spin-coated SnO2 nanofilms.Mater Sci Pol2014;32:729-36

[10]

D’Innocenzo V,Alcocer MJ.Excitons versus free charges in organo-lead tri-halide perovskites.Nat Commun2014;5:3586

[11]

Kim H,Cánovas E.Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites.Nat Commun2017;8:687 PMCID:PMC5612932

[12]

Manoogian A.Temperature dependence of the energy gap in semiconductors.Can J Phys1984;62:285-7

[13]

Geng W,Zhang Y,Liu L.First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics.J Phys Chem C2014;118:19565-71

[14]

Umebayashi T,Kondo T.Electronic structures of lead iodide based low-dimensional crystals.Phys Rev B2003;67:155405

[15]

Dai J,Zhu C,Xu C.Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures.J Mater Chem C2016;4:4408-13

[16]

Baikie T,Kadro JM.Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications.J Mater Chem A2013;1:5628-41

[17]

Francisco-lópez A,Alonso MI.Phase diagram of methylammonium/formamidinium lead iodide perovskite solid solutions from temperature-dependent photoluminescence and raman spectroscopies.J Phys Chem C2020;124:3448-58

[18]

Wu K,Ma C.Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films.Phys Chem Chem Phys2014;16:22476-81

[19]

Phillips JE,Mccandless BE,Shafarman WN.Polycrystalline heterojunction solar cells: a device perspective.Physica Status Solidi1996;194:31-9

[20]

Hegedus SS.Thin-film solar cells: device measurements and analysis.Prog Photovolt2004;12:155-76

[21]

Li Y,Zhao M.Study on the performance of oxygen-rich Zn(O,S) buffers fabricated by sputtering deposition and Zn(O,S)/Cu(In,Ga)(S,Se)2 interfaces.ACS Appl Mater Interfaces2022;14:24435-46

PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

/