Rigid-flexible coupling poly (phenylene sulfide) fiber membrane: a highly stable chemical and thermal material for energy and environmental applications

Qixuan Zhu , Tao Zhang , Xiaoqing Zhu , Jia Zhang , Minghui Shan , Zexu Hu , Guiyin Xu , Meifang Zhu

Energy Materials ›› 2024, Vol. 4 ›› Issue (2) : 400016

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (2) :400016 DOI: 10.20517/energymater.2023.85
Review

Rigid-flexible coupling poly (phenylene sulfide) fiber membrane: a highly stable chemical and thermal material for energy and environmental applications

Author information +
History +
PDF

Abstract

The poly (phenylene sulfide) (PPS) fiber membrane is composed of interwoven fibers, with a three-dimensional porous structure. The three-dimensional porous structure makes PPS fiber membranes have high porosity and large specific surface area, which stands out in the field of membrane separation. A PPS fiber is a high-performance fiber with excellent chemical and thermal stability. These characteristics allow PPS fiber membranes to be used in harsh membrane separation environments such as strong acids, alkalis, and high temperatures. However, the corrosion resistance and high-temperature stability of PPS fibers also make the preparation of PPS fibers and their membranes challenging. In this paper, the preparation method is summarized, including two direct methods to make a PPS fiber membrane: melt-blown spinning and melt electrostatic spinning, and two indirect methods: wet papermaking and weaving. Additionally, the applications of PPS fiber membranes are summarized in detail in energy and environmental fields, such as lithium-ion batteries, alkaline water electrolysis, air filtrations, chemical catalyst substrates, and oil-water separations. This review provides an insightful understanding of PPS fiber membrane preparation methods and the interconnections between these preparation methods and specific applications, thus laying a solid foundation for further advancing the range of PPS fiber membrane applications.

Keywords

PPS fiber membrane / preparation method / energy and environmental applications

Cite this article

Download citation ▾
Qixuan Zhu, Tao Zhang, Xiaoqing Zhu, Jia Zhang, Minghui Shan, Zexu Hu, Guiyin Xu, Meifang Zhu. Rigid-flexible coupling poly (phenylene sulfide) fiber membrane: a highly stable chemical and thermal material for energy and environmental applications. Energy Materials, 2024, 4(2): 400016 DOI:10.20517/energymater.2023.85

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de Mattos IL, de Castro MDL, Valcárcel M. Pervaporation: an integrated evaporation/gas-diffusion approach to analytical continuous separation techniques.Talanta1995;42:755-63

[2]

Arosio P,Mahadevan L.Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles.Nano Lett2014;14:2365-71

[3]

Zoccali M,Mondello L.Recent advances in the coupling of carbon dioxide-based extraction and separation techniques.Trends Analyt Chem2019;116:158-65

[4]

Zhang S,Liu H,Wei Y.Preparation of ion-exchange resin via in-situ polymerization for highly selective separation and continuous removal of palladium from electroplating wastewater.Sep Purif Technol2021;258:117670

[5]

Chen JP,Wang LK,Wei Y.Membrane separation: basics and applications. In: Wang LK, editor. Membrane and desalination technologies. Totowa, NJ: Humana Press; 2011. pp. 271-332.

[6]

Strathmann H.Membrane separation processes: current relevance and future opportunities.AIChE J2001;47:1077-87

[7]

Nazir A,Maan A,Giorno L.Membrane separation technology for the recovery of nutraceuticals from food industrial streams.Trends Food Sci Technol2019;86:426-38

[8]

Liu HB,Guo LW.Current and future use of membrane technology in the traditional Chinese medicine industry.Sep Purif Rev2022;51:484-502

[9]

Ravanchi M, Kaghazchi T, Kargari A. Application of membrane separation processes in petrochemical industry: a review.Desalination2009;235:199-244

[10]

Castel C.Membrane separations and energy efficiency.J Membr Sci2018;548:345-57

[11]

Goh SH,Yong WF.Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications.Small2022;18:e2107536

[12]

Visvanathan C,Parameshwaran K.Membrane separation bioreactors for wastewater treatment.Crit Rev Environ Sci Technol2000;30:1-48

[13]

Li B,Guo Z,Jiao T.Recent developments in the application of membrane separation technology and its challenges in oil-water separation: a review.Chemosphere2023;327:138528

[14]

Ulbricht M.Advanced functional polymer membranes.Polymer2006;47:2217-62

[15]

Swolfs Y,Baets J.Failure behaviour of self-reinforced polypropylene at and below room temperature.Compos Part A Appl Sci Manuf2014;65:100-7

[16]

Zhang RC,Lu A,Liu B.The glass transition temperature of poly(phenylene sulfide) with various crystallinities.Polym Int2013;62:449-53

[17]

Rahate AS,Waghuley SA.Polyphenylene sulfide (PPS): state of the art and applications.Rev Chem Eng2013;29:471-89

[18]

Hill Jr HW. History of polyphenylene sulfide. In: Seymour RB, Kirshenbaum GS, editors. High performance polymers: their origin and development. Dordrecht, The Netherlands: Springer; 1986, pp. 135-48.

[19]

Cunningham BD,Baird DG.Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer.J Power Sources2007;165:764-73

[20]

Gu J,Dang J,Hu S.Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites.RSC Adv2014;4:22101-5

[21]

Wang XH,Wan JX,Zhan Y.Research on the acid fastness of polyphenylene sulfide fiber.Adv Mater Res2011;332-4:281-5

[22]

Guo Y.Long-term creep of polyphenylene sulfide (PPS) subjected to complex thermal histories: the effects of nonisothermal physical aging.Polymer2009;50:4048-55

[23]

Wang HC,Liu Y.Life problem analysis on PPS filter application of bag dedusters in coal-fired power plants.Adv Mater Res2011;236-8:2464-70

[24]

Lian D,Han W,Lu J.Kinetics and evolved gas analysis of the thermo-oxidative decomposition for neat PPS fiber and nano Ti-SiO2 modified PPS fiber.J Mol Struct2019;1196:734-46

[25]

Pan D,Zhao L.Polyphenylene sulfide scaffold based flexible supercapacitor electrode with competitive areal capacitance and flame-retardant behavior.React Funct Polym2022;174:105216

[26]

Czerwiński W.Electronic processes in poly(p-phenylene) and related compounds, II. structure and electrical properties of polymers related to poly(p-phenylene sulfide).Angew Makromol Chem1986;144:101-12

[27]

Lhymn C.Slurry erosion of polyphenylene sulfide-glass fiber composites.Wear1987;119:1-11

[28]

Tan C,Gao J,Qing L.Temperature dependence of the elongation behavior of polyphenylene sulfide using melt spinning technique.IOP Conf Ser Mater Sci Eng2017;274:012039

[29]

Song SS,Cakmak M.Structure development in the melt spinning and drawing of poly p phenylene sulfide fibers.Int Polym Proc1989;4:96-102

[30]

Dandan L,Lixin Y,Baojun W.Effect of quercetin on the structure and oxidation resistance of polyphenylene sulfide fiber prepared by melt spinning.Text Res J2023;93:3286-98

[31]

Xing J,Chen Z,Zhang Z.Effect of montmorillonite on the oxidative stability of polyphenylene sulfide fibers prepared by melt spinning.Text Res J2022;92:2742-54

[32]

Carr PL.Drawing behaviour, mechanical properties and structure of poly(p-phenylene sulphide) fibres.Polymer1987;28:2070-6

[33]

Murthy NS,Frommer JE.Structural changes during annealing and during acceptor doping of oriented poly(p-phenylene sulfide).Synth Met1984;9:91-6

[34]

Zhang Y,Zhang RP,Lian DD.Effect of spinning speed on structure and properties of poly-phenylene sulfide fiber.Polym Mater Sci Eng2015;31:114-8. (In Chinese)

[35]

Gulgunje P,Spruiell J.Structure and properties development in poly(phenylene sulfide) fibers. II. effect of one-zone draw annealing.J Appl Polym Sci2012;125:1890-900

[36]

Hassounah IA,Sparks SA.Processing of multilayered filament composites by melt blown spinning.J Appl Polym Sci2014;131:app.40786

[37]

Xie S.The effect of air pressure on the evolution of fiber path in melt-blowing process.Adv Mater Res2014;852:496-500

[38]

Hu JB,Shao WL,Chen YK.Research on melt-blown spinnability of PPS.Shanghai Text Sci Technol2019;47:29-31. (in Chinese)

[39]

Yu Y,Liu M.Polyphenylene sulfide ultrafine fibrous membrane modified by nanoscale ZIF-8 for highly effective adsorption, interception, and recycling of iodine vapor.ACS Appl Mater Interfaces2019;11:31291-301

[40]

Zhou FL,Porat I.Mass production of nanofibre assemblies by electrostatic spinning.Polym Int2009;58:331-42

[41]

Jang SY,Khil MS.Welded electrochromic conductive polymer nanofibers by electrostatic spinning.Adv Mater2005;17:2177-80

[42]

Guo J,Yan Z,Li J.Preparation and evaluation of dual drug-loaded nanofiber membranes based on coaxial electrostatic spinning technology.Int J Pharm2022;629:122410

[43]

Nayak R,Truong YB.Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning.Adv Mater Res2012;472-5:1294-9

[44]

Larrondo L.Electrostatic fiber spinning from polymer melts. I. experimental observations on fiber formation and properties.J Polym Sci Polym Phys Ed1981;19:909-20

[45]

Li HY,Liu Y,Yang WM.The preparation of polypropylene/polyvinyl alcohol ultra-fine fibers using melt electrospinning method.Key Eng Mater2013;561:8-12

[46]

An Y,Li S.Melt-electrospinning of polyphenylene sulfide.Fibers Polym2018;19:2507-13

[47]

Chen Q,Deng H.Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration.Polym Eng Sci2020;60:2887-94

[48]

Fan ZZ,Yan X,Long YZ.Fabrication of ultrafine PPS fibers with high strength and tenacity via melt electrospinning.Polymers2019;11:530 PMCID:PMC6473442

[49]

Kou X,Zhang Y.Fabrication of polyphenylene sulfide nanofibrous membrane via sacrificial templated-electrospinning for fast gravity-driven water-in-oil emulsion separation.Sep Purif Technol2021;275:119124

[50]

Balea A,Monte MC.Industrial application of nanocelluloses in papermaking: a review of challenges, technical solutions, and market perspectives.Molecules2020;25:526 PMCID:PMC7037648

[51]

Hui L,Han X.Application of synthetic fiber in air filter paper.BioResources2018;13:4264-78

[52]

Zhang M,Lu Z.Research and development status and related technology of synthetic fiber wet paper making.China Paper2010;31:49-52. (in Chinese)Available from: https://kns.cnki.net/KXReader/Detail?invoice=DapfgaPZrZN0oDNK0LXjqjkPoOSw5AN4dtBTwH2B4QaAMFgi7E2GPimklbij3kgz0LWpFB3q%2BgcqIoAmk6WnYjAEWUmSdvJFEVjbzdJI5Q5X%2FKacI6WXcCwE3VJBCMwHCnQVf%2FtBXg1wcbLBGtXykz8yJRE4LgsdQ4YsvyubIZ8%3D&DBCODE=CJFQ&FileName=COKE201023017&TABLEName=cjfd2010&nonce=F495557B0C7F4EBBACFE33407A2C8C09&TIMESTAMP=1708481893825&uid= [Last accessed on 1 Mar 2024]

[53]

Zhu C,Xu J.Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries.Carbohydr Polym2020;248:116753

[54]

Zhu C,Qiu S,Wang L.Tailoring the pore size of polyphenylene sulfide nonwoven with bacterial cellulose (BC) for heat-resistant and high-wettability separator in lithium-ion battery.Compos Commun2021;24:100659

[55]

Zhu C,Xu J.Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery.J Membr Sci2019;588:117169

[56]

Yu Y,Zhao L.Flexible and heat-resistant polyphenylene sulfide ultrafine fiber hybrid separators for high-safety lithium-ion batteries.Chem Eng J2023;452:139112

[57]

Gong X,Zhou Y.4-advanced weaving technologies for high-performance fabrics. In: High-performance apparel materials, development, and applications Woodhead publishing series in textiles; 2018. pp.75-112.

[58]

Gandhi KL.5 - the fundamentals of weaving technology. In: Woven textiles (second edition) principles, technologies and applications the textile institute book series; 2020. pp.167-270.

[59]

Mecha CA.Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment.J Membr Sci2014;458:149-56

[60]

Qiu C,Wang R,Fane AG.High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate.Desalination2012;287:266-70

[61]

Lee HI,Kim SK.Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode.J Membr Sci2020;616:118541

[62]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:e1800561

[63]

Luiso S.Lithium-ion battery separators: recent developments and state of art.Curr Opin Electrochem2020;20:99-107

[64]

Costa CM,Kim JH,Lanceros-Méndez S.Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes.Energy Stor Mater2019;22:346-75

[65]

Choi J.A roadmap of battery separator development: past and future.Curr Opin Electrochem2022;31:100858

[66]

Held M,Zennegg M.Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility.Renew Sustain Energy Rev2022;165:112474

[67]

Klein S,van Wickeren S.Understanding the role of commercial separators and their reactivity toward LiPF6 on the failure mechanism of high-voltage NCM523 || graphite lithium ion cells.Adv Energy Mater2022;12:2102599

[68]

Jeong HS,Lee SY.Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: advantageous effect of highly percolated, electrolyte-philic microporous architecture.J Membr Sci2012;415-6:513-9

[69]

Luo D,Xu J.Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery.Compos Sci Technol2018;157:119-25

[70]

Zhang J,Xu J.Enhanced mechanical behavior and electrochemical performance of composite separator by constructing crosslinked polymer electrolyte networks on polyphenylene sulfide nonwoven surface.J Membr Sci2020;597:117622

[71]

Zeng X,He R.Tissue paper-based composite separator using nano-SiO2 hybrid crosslinked polymer electrolyte as coating layer for lithium ion battery with superior security and cycle stability.Cellulose2022;29:3985-4000

[72]

Hu Y,Zeng X.Tissue paper-based composite separator using double-crosslinked polymer electrolyte as coating layer for lithium-ion battery with superior ion transport and cyclic stability.Cellulose2023;30:247-61

[73]

Zhang H,Guan M.Nanofibrillated cellulose (NFC) as a pore size mediator in the preparation of thermally resistant separators for lithium ion batteries.ACS Sustain Chem Eng2018;6:4838-44

[74]

Trisno MLA,Lee SJ.Reinforced gel-state polybenzimidazole hydrogen separators for alkaline water electrolysis.Energy Environ Sci2022;15:4362-75

[75]

Guo Y,Zhou J.Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis.IOP Conf Ser Earth Environ Sci2019;371:042022

[76]

Renaud R.Separator materials for use in alkaline water electrolysers.Int J Hydrog Energy1982;7:155-66

[77]

Modica G,Montoneri E,Tempesti E.Electrolytic separators from asbestos cardboard: a flexible technique to obtain reinforced diaphragms or ion-selective membranes.Int J Hydrog Energy1983;8:419-35

[78]

de Groot MT, Vreman AW. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm.Electrochim Acta2021;369:137684

[79]

Zhu L,Zhang D,Zeng Z.Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.J Colloid Interface Sci2017;498:136-43

[80]

Chung YT,Mohammad AW.Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting: optimization through response surface methodology approach.J Ind Eng Chem2014;20:1549-57

[81]

Teotia RS,Singh AK,Kadam SS.Bifunctional polysulfone-chitosan composite hollow fiber membrane for bioartificial liver.ACS Biomater Sci Eng2015;1:372-81

[82]

Aerts P,Genné I.Polysulfone-ZrO2 surface interactions. The influence on formation, morphology and properties of zirfon-membranes.J Phys Chem B2006;110:7425-30

[83]

Xu L,You Y,Zhao Y.Polysulfone and zirconia composite separators for alkaline water electrolysis.Front Chem Sci Eng2013;7:154-61

[84]

Oh SJ,Lee YT.Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement.J Membr Sci2009;345:13-20

[85]

Lee JW,Lee JH.Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer.Polymers2020;12:2821 PMCID:PMC7759930

[86]

Sun YP.Post-processing effect on the performance of PPS fiber membrane for water electrolyzer hydrogen production.J Ind Text2015;33:14-7Available from: https://kns.cnki.net/kcms2/article/abstract?v=Y2wviAwYlnKCFOnL-zI2KTfSP29ofZH8v1rUh0FOUoTRi44jfw2T4q8M288fEpRS69plR14Z9hFgXlN_XoPbO79terPbaDM0Vh0yetySeSnGOqk1IV4xoOLh8JIuZYQQyYpCCxlssyA=&uniplatform=NZKPT&language=CHS [Last accessed on 1 Mar 2024]

[87]

Su YP.The preparation and performance of polyphenylene sulfide staple fibers and filament diaphragm.J Henan Univ Eng2022;34:04

[88]

Liang CZ,Lai JY.A review of polymeric composite membranes for gas separation and energy production.Prog Polym Sci2019;97:101141

[89]

Vermeiren PH,Beckers H,Claes A.The influence of manufacturing parameters on the properties of macroporous Zirfon® separators.J Porous Mater2008;15:259-64

[90]

Schalenbach M,Stolten D.Hydrogen diffusivity and electrolyte permeability of the Zirfon PERL separator for alkaline water electrolysis.J Electrochem Soc2016;163:F1480-8

[91]

In Lee H,Kim J.The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer.Int J Energy Res2020;44:1875-85

[92]

Ali MF,Bernäcker CI.Zirconia toughened alumina-based separator membrane for advanced alkaline water electrolyzer.Polymers2022;14:1173 PMCID:PMC8951763

[93]

Lee JW,Lee C.Cellulose nanocrystals-blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents.Chem Eng J2022;428:131149

[94]

Francis CFJ,Best AS.Lithium-ion battery separators for ionic-liquid electrolytes: a review.Adv Mater2020;32:e1904205

[95]

Manabe A,Kosaka J,Okajima T.Study on separator for alkaline water electrolysis.J Electrochem Soc2016;163:F3139-45

[96]

Jbaily A,Liu J.Air pollution exposure disparities across US population and income groups.Nature2022;601:228-33 PMCID:PMC10516300

[97]

Clappier A,Beekmann M,de Meij A.Impact of SOx, NOx and NH3 emission reductions on PM2.5 concentrations across Europe: hints for future measure development.Environ Int2021;156:106699 PMCID:PMC8381764

[98]

Tanthapanichakoon W,Nitta KH,Otani Y.Mechanical degradation of filter polymer materials: polyphenylene sulfide.Polym Degrad Stab2006;91:2614-21

[99]

Tanthapanichakoon W,Nitta KH,Endoh S.Degradation of semi-crystalline PPS bag-filter materials by NO and O2 at high temperature.Polym Degrad Stab2006;91:1637-44

[100]

Tanthapanichakoon W,Nitta KH,Otani Y.Degradation of bag-filter non-woven fabrics by nitric oxide at high temperatures.Adv Powder Technol2007;18:349-54

[101]

Zhao P,Chen C.PPS ultrafine fiber enhanced aramid fiber filter with superior thermal stability and excellent chemical resistance for efficient PM2.5 removal.React Funct Polym2023;188:105605

[102]

Ye W,Zhou Q,Zhong Z.Gridded fibers’ restricted melting strategy for gas permeance and binding enhancement of the ePTFE/PPS filter.Ind Eng Chem Res2023;62:9503-14

[103]

Zhang B,Cao H.Development of an asymmetric composite PPS-based bag-filter material through membrane laminating and superfine fiber blending: lab test, field application and development of numerical models.J Hazard Mater2023;459:132078

[104]

Zheng WJ,Chen J,Fu BB.Fabrication of nf-MnO2/PPS functional composites for selective reduction of NOx with NH3.Acta Polym Sinica2017;11:1806-15

[105]

Luo R,Ju S.Flowerlike FeOX-MnOX amorphous oxides anchored on PTFE/PPS membrane for efficient dust filtration and low-temperature no reduction.Ind Eng Chem Res2022;61:5816-24

[106]

Li H,He Y,Yin Z.Emerging surface strategies for porous materials-based phase change composites.Matter2022;5:3225-59

[107]

DeCoste JB.Metal-organic frameworks for air purification of toxic chemicals.Chem Rev2014;114:5695-727

[108]

Bux H,Cravillon J,Li Y.Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation.Chem Mater2011;23:2262-9

[109]

Wang W,Zhang H.Harsh environmental-tolerant ZIF-8@polyphenylene sulfide membrane for efficient oil/water separation and air filtration under extreme conditions.J Membr Sci2023;685:121885

[110]

Vankelecom IFJ.Polymeric membranes in catalytic reactors.Chem Rev2002;102:3779-810

[111]

Liu JW,Yu SH.Macroscopic-scale assembled nanowire thin films and their functionalities.Chem Rev2012;112:4770-99

[112]

Wang P,Hu L.Load of Ag3PO4 particles on sulfonated polyphenylene sulfide superfine fibre with high visible-light photocatalytic activity.Fibers Polym2018;19:1379-85

[113]

Huston PL.Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction.Water Res1999;33:1238-46

[114]

Azbar N,Kestioglu K.Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent.Chemosphere2004;55:35-43

[115]

Chen W,Huang J.Iron oxide containing graphene/carbon nanotube based carbon aerogel as an efficient E-Fenton cathode for the degradation of methyl blue.Electrochim Acta2016;200:75-83

[116]

Liu M,Xiong S.A flexible and efficient electro-fenton cathode film with aeration function based on polyphenylene sulfide ultra-fine fiber.React Funct Polym2019;139:42-9

[117]

Hu L,He C.Ferrous-oxalate-decorated polyphenylene sulfide fenton catalytic microfiber for methylene blue degradation.Compos Part B Eng2019;176:107220

[118]

Chu Z,Seeger S.Oil/water separation with selective superantiwetting/superwetting surface materials.Angew Chem Int Ed2015;54:2328-38

[119]

Zhang R,Shen L,Lin H.Preparation of nickel@polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation.J Membr Sci2022;653:120541

[120]

Adebajo MO,Kloprogge JT,Kokot S.Porous materials for oil spill cleanup: a review of synthesis and absorbing properties.J Porous Mater2003;10:159-70

[121]

Cao Y,Tao L.Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation.ACS Appl Mater Interfaces2013;5:4438-42

[122]

Huang H,Li Y.Polyphenylene sulfide microfiber membrane with superhydrophobicity and superoleophilicity for oil/water separation.J Mater Sci2018;53:13243-52

[123]

Huang H,Zhao L.A facile fabrication of chitosan modified PPS-based microfiber membrane for effective antibacterial activity and oil-in-water emulsion separation.Cellulose2019;26:2599-611

[124]

Fan T,Fan Q.Robust graphene@PPS fibrous membrane for harsh environmental oil/water separation and all-weather cleanup of crude oil spill by joule heat and photothermal effect.ACS Appl Mater Interfaces2021;13:19377-86

[125]

Gao Y,Wang S,Lyu L.Superhydrophobic polyphenylene sulfide fiber paper with nanofiber network-like structure prepared via regulation of TIPS process for oil/water separation.J Mater Sci2022;57:20531-42

PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

/