Superior compatibility of silicon nanowire anodes in ionic liquid electrolytes

Giovanna Maresca , Abinaya Sankaran , Luigi J. Santa Maria , Michela Ottaviani , Sebastien Fantini , Kevin M. Ryan , Sergio Brutti , Giovanni Battista Appetecchi

Energy Materials ›› 2024, Vol. 4 ›› Issue (2) : 400017

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (2) :400017 DOI: 10.20517/energymater.2023.84
Article

Superior compatibility of silicon nanowire anodes in ionic liquid electrolytes

Author information +
History +
PDF

Abstract

Silicon nanowire anodes were investigated in lithium-metal cells using different electrolyte formulations based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and N-trimethyl-N-butyl-ammonium bis(fluoro sulfonyl)imide ionic liquids. The lithium insertion process in the silicon anode was analyzed by cyclic voltammetry measurements, performed at different scan rates and for prolonged cycles, combined with impedance spectroscopy analysis. A galvanostatic charge-discharge cycling test was performed to analyze the electrochemical performances using different types of ionic liquids. A study of the Solid Electrolyte Interphase layer on the silicon nanowire electrode surface was carried out through X-ray photoelectron spectroscopy. In general, the silicon anodes in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide-based electrolytes show very good reversibility, reproducibility, and efficiency in the lithiation process, even at high scan rates, and exhibit a reversible capacity exceeding 1,000 mA h g-1 after 2,000 charge-discharge cycles, corresponding to 46% of the initial value.

Keywords

Silicon anodes / ionic liquids / solid electrolyte interphase / XPS analysis / lithium-ion batteries

Cite this article

Download citation ▾
Giovanna Maresca, Abinaya Sankaran, Luigi J. Santa Maria, Michela Ottaviani, Sebastien Fantini, Kevin M. Ryan, Sergio Brutti, Giovanni Battista Appetecchi. Superior compatibility of silicon nanowire anodes in ionic liquid electrolytes. Energy Materials, 2024, 4(2): 400017 DOI:10.20517/energymater.2023.84

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M,Bresser D.Lithium-ion batteries - current state of the art and anticipated developments.J Power Sources2020;479:228708

[2]

Miao Y,von Jouanne A.Current Li-ion battery technologies in electric vehicles and opportunities for advancements.Energies2019;12:1074

[3]

Rangarajan SS,Sudhakar A.Lithium-ion batteries - the crux of electric vehicles with opportunities and challenges.Clean Technol2022;4:908-30

[4]

Gandoman FH,Goutam S.Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges.Appl Energy2019;251:113343

[5]

Fang C,Meng YS.Key issues hindering a practical lithium-metal anode.Trends Chem2019;1:152-8

[6]

Feng X,Liu X,Xia Y.Thermal runaway mechanism of lithium ion battery for electric vehicles: a review.Energy Stor Mater2018;10:246-67

[7]

Feng X,He X.Mitigating thermal runaway of lithium-ion batteries.Joule2020;4:743-70

[8]

Su X,Li J.Silicon-based nanomaterials for lithium-ion batteries: a review.Adv Energy Mater2014;4:1300882

[9]

Teki R,Krishnan R.Nanostructured silicon anodes for lithium ion rechargeable batteries.Small2009;5:2236-42

[10]

Schwan J,Mangolini L.Critical barriers to the large scale commercialization of silicon-containing batteries.Nanoscale Adv2020;2:4368-89 PMCID:PMC9419004

[11]

Chan CK,Liu G.High-performance lithium battery anodes using silicon nanowires.Nat Nanotechnol2008;3:31-5

[12]

Adenusi H,Passerini S,Chen G.Lithium batteries and the solid electrolyte interphase (SEI) - progress and outlook.Adv Energy Mater2023;13:2203307

[13]

Liu Q,Yu L.Interface engineering to boost thermal safety of microsized silicon anodes in lithium-ion batteries.Small Methods2022;6:e2200380

[14]

Peled E.The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model.J Electrochem Soc1979;126:2047-51

[15]

Peled E.Review - SEI: past, present and future.J Electrochem Soc2017;164:A1703-19

[16]

Shin J,Lee Y.Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries.Energy Stor Mater2020;25:764-81

[17]

Xu C,Philippe B.Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive.Chem Mater2015;27:2591-9

[18]

Kennedy T,Laffir F.Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes.J Power Sources2017;359:601-10

[19]

Kalhoff J,Bresser D.Safer electrolytes for lithium-ion batteries: state of the art and perspectives.ChemSusChem2015;8:2154-75

[20]

Krishna DNG.Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): recent developments and challenges.Appl Surf Sci Adv2022;12:100332

[21]

Tan S,Zhang ZR.Recent progress in research on high-voltage electrolytes for lithium-ion batteries.Chemphyschem2014;15:1956-69

[22]

Xu Z,Li H,Wang J.Electrolytes for advanced lithium ion batteries using silicon-based anodes.J Mater Chem A2019;7:9432-46

[23]

Stokes K,Kim GT.Influence of carbonate-based additives on the electrochemical performance of Si NW anodes cycled in an ionic liquid electrolyte.Nano Lett2020;20:7011-9

[24]

Whiteley JM,Piper DM.High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries.J Electrochem Soc2016;163:A251-4

[25]

Falco M,Destro M.An electrochemical compatibility investigation of RTIL-based electrolytes with Si-based anodes for advanced Li-ion batteries.Mater Today Sustain2023;21:100299

[26]

Bellusci M,De Francesco M.Ionic liquid electrolytes for safer and more reliable sodium battery systems.Appl Sci2020;10:6323

[27]

Montanino M,Passerini S.Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices.Electrochim Acta2013;96:124-33

[28]

De Francesco M, Simonetti E, Gorgi G, Appetecchi GB. About the purification route of ionic liquid precursors.Challenges2017;8:11

[29]

Geaney H,O’dwyer C,Singh A.Growth of crystalline copper silicide nanowires in high yield within a high boiling point solvent system.Chem Mater2012;24:4319-25

[30]

Stokes K,Sheehan M,Ryan KM.Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes.Nano Lett2019;19:8829-35

[31]

Mullane E,Geaney H,Ryan KM.Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor system and optimization of the seed/nanowire interface for dual lithium cycling.Chem Mater2013;25:1816-22

[32]

Brutti S,De Francesco M.Ionic liquid electrolytes for high-voltage, lithium-ion batteries.J Power Sources2020;479:228791

[33]

Kim GT,Brandon M.Behavior of germanium and silicon nanowire anodes with ionic liquid electrolytes.ACS Nano2017;11:5933-43

[34]

Zhang W.Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries.J Power Sources2011;196:877-85

[35]

Ševčík A.Oscillographic polarography with periodical triangular voltage.Collect Czech Chem Commun1948;13:349-77

[36]

Randles JEB.A cathode ray polarograph. Part II. - The current-voltage curves.Trans Faraday Soc1948;44:327-38

[37]

Ai Q,Guo J.Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for high performance lithium-ion batteries.Adv Mater Inter2019;6:1901187

[38]

de Rooij DMR. Electrochemical methods: fundamentals and applications.Anti-Corros Methods Mater2003;50

[39]

Tsierkezos NG.Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K.J Solution Chem2007;36:289-302

[40]

Kant R. Theory for staircase voltammetry and linear scan voltammetry on fractal electrodes: emergence of anomalous randles-sevik behavior.Electrochim Acta2013;111:223-33

[41]

Churikov A,Ivanishcheva I,Khasanova N.Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques.Electrochim Acta2010;55:2939-50

[42]

Churikov AV,Ushakov AV.Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries.J Solid State Electrochem2014;18:1425-41

[43]

Zeng W,Peng X.Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries.Adv Energy Mater2018;8:1702314

[44]

Sivonxay E,Persson KA.The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles.Electrochim Acta2020;331:135344

[45]

Wang G,Shi J,Su H.New insights into Li diffusion in Li-Si alloys for Si anode materials: role of Si microstructures.Nanoscale2019;11:14042-9

[46]

Nakajima T. Advanced fluoride-based materials for energy conversion. 2015. Available from: https://www.sciencedirect.com/book/9780128006795/advanced-fluoride-based-materials-for-energy-conversion#book-info [Last accessed on 8 Mar 2024]

[47]

Macdonald JR.Fundamentals of impedance spectroscopy. In: Barsoukov E, Macdonald JR, editors. Impedance spectroscopy. Hoboken, NJ: John Wiley & Sons, Inc.; 2018. pp. 1-20.

[48]

Middlemiss LA,Sayers R.Characterisation of batteries by electrochemical impedance spectroscopy.Energy Rep2020;6:232-41

[49]

Barsoukov E.Impedance spectroscopy: theory, experiment, and applications. Hoboken, NJ: John Wiley & Sons, Inc.; 2005.

[50]

Xu W.Composite silicon nanowire anodes for secondary lithium-ion cells.J Electrochem Soc2010;157:A41

[51]

Li J.An in situ X-ray diffraction study of the reaction of Li with crystalline Si.J Electrochem Soc2007;154:A156

[52]

Appetecchi G,Alessandrini F.0.6Ah Li/V2O5 battery prototypes based on solvent-free PEO-LiN(SO2CF2CF3)2 polymer electrolytes.J Power Sources2005;143:236-42

[53]

Appetecchi GB.Poly(ethylene oxide)-LiN(SO2CF2CF3)2 polymer electrolytes: II. Characterization of the interface with lithium.J Electrochem Soc2002;149:A891

[54]

Hou T,Rajput NN.The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation.Nano Energy2019;64:103881

[55]

Philippe B,Gorgoi M,Gonbeau D.Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study.J Am Chem Soc2013;135:9829-42

[56]

Wu Z,Li J.Solid electrolyte interphase layer formation on the Si-based electrodes with and without binder studied by XPS and ToF-SIMS analysis.Batteries2022;8:271

[57]

Nakai H,Kita A.Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes.J Electrochem Soc2011;158:A798-801

[58]

Philippe B,Allouche J.Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy.Chem Mater2012;24:1107-15

[59]

Morales-ugarte JE,Rouault H,Santini CC.EIS and XPS investigation on SEI layer formation during first discharge on graphite electrode with a vinylene carbonate doped imidazolium based ionic liquid electrolyte.J Phys Chem C2018;122:18223-30

[60]

Piper DM,Leung K.Stable silicon-ionic liquid interface for next-generation lithium-ion batteries.Nat Commun2015;6:6230

[61]

Forster-tonigold K,Bansmann J,Groß A.A combined XPS and computational study of the chemical reduction of BMP-TFSI by lithium. Batteries Supercaps 2022;5:e202200307.

[62]

Karimi N,Geaney H.Stable cycling of Si nanowire electrodes in fluorine-free cyano-based ionic liquid electrolytes enabled by vinylene carbonate as SEI-forming additive.J Power Sources2023;558:232621

[63]

Wu J,Chen Y.Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations.Nano Energy2021;89:106489

[64]

Bhattacharyya S,Turban G.Determination of the structure of amorphous nitrogenated carbon films by combined Raman and X-ray photoemission spectroscopy.J Appl Phys1998;83:3917-9

[65]

Dementjev A,van de Sanden M,Naumkin A.X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films.Diam Relat Mater2000;9:1904-7

[66]

Buchner F,Bozorgchenani M,Behm RJ.Interaction of a self-assembled ionic liquid layer with graphite(0001): a combined experimental and theoretical study.J Phys Chem Lett2016;7:226-33

[67]

Blyth R,Netzer F.XPS studies of graphite electrode materials for lithium ion batteries.Appl Surface Sci2000;167:99-106

[68]

Nguyen CC.Characterization of SEI layer formed on high performance Si-Cu anode in ionic liquid battery electrolyte.Electrochem Commun2010;12:1593-5

[69]

Bhattacharyya S,Turban G.Spectroscopic determination of the structure of amorphous nitrogenated carbon films.J Appl Phys1998;83:4491-500

[70]

Martin L,Ulldemolins M,Le Cras F.Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: the influence of vinylene carbonate additive.Solid State Ion2012;215:36-44

[71]

Vogl US,Das P.The mechanism of SEI formation on single crystal Si(100), Si(110) and Si(111) electrodes.J Electrochem Soc2015;162:A2281-8

[72]

Dedryvère R,Grugeon S,Tarascon JM.Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study.J Phys Chem B2005;109:15868-75

[73]

Etacheri V,Gofer Y.Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation.Langmuir2012;28:6175-84

[74]

Dedryvère R,Martinez H,Lemordant D.XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.J Phys Chem B2006;110:12986-92

[75]

Kim H,Gachot G,Sannier L.Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives.Electrochim Acta2014;136:157-65

[76]

Sharova V,Diemant T,Behm R.Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries.J Power Sources2018;375:43-52

[77]

Eshetu GG,Grugeon S.In-Depth interfacial chemistry and reactivity focused investigation of lithium-imide- and lithium-imidazole-based electrolytes.ACS Appl Mater Interfaces2016;8:16087-100

[78]

Leung K,Foster ME.Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries.J Electrochem Soc2014;161:A213-21

[79]

Ensling D,Nytén A,Thomas JO.A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes.J Mater Chem2009;19:82-8

[80]

Nie M.Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries.J Electrochem Soc2014;161:A1001-6

[81]

Choi N,Lee KY,Kim H.Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode.J Power Sources2006;161:1254-9

[82]

Li Q,Han X.Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive.ACS Appl Mater Interfaces2019;11:14066-75

[83]

Bongiorno C,D’alessio U.On the redox activity of the solid electrolyte interphase in the reduction/oxidation of silicon nanoparticles in secondary lithium batteries.Energy Technol2022;10:2100791

PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

/