Engineering of lithiophilic hosts for stable lithium metal anodes

Lianzhan Huang , Wei Li , Zhiming Cui

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400030

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400030 DOI: 10.20517/energymater.2023.83
Review

Engineering of lithiophilic hosts for stable lithium metal anodes

Author information +
History +
PDF

Abstract

Lithium (Li0) metal has been deemed the desired anode for the future of cutting-edge rechargeable Li batteries benefiting from its lowest reduction potential and ultrahigh theoretical specific capacity. Nevertheless, the large-scale applications of Li metal batteries are restricted by scattered Li dendrite formation and uncontrollable volume expansion. To address these issues, a currently prevalent measure is to use structured lithiophilic hosts for Li metal. The enhanced lithiophilicity of hosts is significant for regulating the Li nucleation barrier. By virtue of these lithiophilic measures, the Li nucleation sites will be well controlled and the Li plating layer will be more stable. Through this article, we classified various lithiophilic hosts and described their applications for Li metal batteries, including heteroatom-doping carbon, lithiophilic-material loading hosts and gradient skeletons. We discussed the inherent advantages and lithophilic mechanisms of these hosts on optimizing the lithophilic properties and analyzed various factors that induced the formation of dendrite Li. Moreover, the review outlines the current challenges and perspectives for Li metal anodes, and some understanding of the lithiophilic chemistry is given.

Keywords

Lithiophilic host / lithium metal anode / lithiophilic mechanism

Cite this article

Download citation ▾
Lianzhan Huang, Wei Li, Zhiming Cui. Engineering of lithiophilic hosts for stable lithium metal anodes. Energy Materials, 2024, 4(3): 400030 DOI:10.20517/energymater.2023.83

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang JG,Xiao J,Liu J.Lithium metal anodes with nonaqueous electrolytes.Chem Rev2020;120:13312-48

[2]

Zhou F,Liang HW,Yu SH.Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance.Angew Chem Int Ed Engl2014;53:11552-6

[3]

Chen H,Boyle DT.Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries.Nat Energy2021;6:790-8

[4]

Wu F,Yu Y.Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.Chem Soc Rev2020;49:1569-614

[5]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[6]

Zeng X,Abd El-hady D.Commercialization of lithium battery technologies for electric vehicles.Adv Energy Mater2019;9:1900161

[7]

Harper G,Kendrick E.Recycling lithium-ion batteries from electric vehicles.Nature2019;575:75-86

[8]

Manthiram A.A reflection on lithium-ion battery cathode chemistry.Nat Commun2020;11:1550 PMCID:PMC7096394

[9]

Zhu P,Marshall J,Goodship V.A review of current collectors for lithium-ion batteries.J Power Sources2021;485:229321

[10]

Gupta A.Designing advanced lithium-based batteries for low-temperature conditions.Adv Energy Mater2020;10:2001972 PMCID:PMC8216142

[11]

Albertus P,Litzelman S.Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries.Nat Energy2018;3:16-21

[12]

Duffner F,Tübke J,Winter M.Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure.Nat Energy2021;6:123-34

[13]

Frith JT,Ulissi U.A non-academic perspective on the future of lithium-based batteries.Nat Commun2023;14:420 PMCID:PMC9879955

[14]

Tikekar MD,Tu Z.Design principles for electrolytes and interfaces for stable lithium-metal batteries.Nat Energy2016;1:16144

[15]

Ghazi ZA,Sun C.Key aspects of lithium metal anodes for lithium metal batteries.Small2019;15:e1900687

[16]

Wang Q,Shen Y.Confronting the challenges in lithium anodes for lithium metal batteries.Adv Sci2021;8:e2101111 PMCID:PMC8425877

[17]

Lin L,Hu YS.A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries.Adv Mater2022;34:e2110323

[18]

Wang T,Zhao X,Nan C.Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries.Adv Funct Mater2020;30:2000786

[19]

Wang H.Materials Design for rechargeable metal-air batteries.Matter2019;1:565-95

[20]

Lai J,Chen N,Wu F.Electrolytes for rechargeable lithium-air batteries.Angew Chem Int Ed Engl2020;59:2974-97

[21]

Liu T,Zhao EW,Garcia-Araez N.Current challenges and routes forward for nonaqueous lithium-air batteries.Chem Rev2020;120:6558-625

[22]

Bruce PG,Hardwick LJ.Li-O2 and Li-S batteries with high energy storage.Nat Mater2011;11:19-29

[23]

Gao Y,Zhang Q,Zheng Z.Fibrous materials for flexible Li-S battery.Adv Energy Mater2021;11:2002580

[24]

Shen X,Cheng X,Huang J.Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes.Energy Storage Mater2018;12:161-75

[25]

Zhan Y,Ma X.Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions.Adv Energy Mater2022;12:2103291

[26]

Yuan H,Liu T.A review of concepts and contributions in lithium metal anode development.Mater Today2022;53:173-96

[27]

Yang CP,Zhang SF,Guo YG.Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nat Commun2015;6:8058 PMCID:PMC4560781

[28]

Mao H,Cai Z.Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries.Angew Chem Int Ed Engl2021;60:19306-13

[29]

Ye Y,Zhao T.An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries.Adv Mater2021;33:e2105029

[30]

Liu Y,Qin X,Chen G.In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition.Nano Lett2019;19:4601-7

[31]

Ma Y,He Y.A “blockchain” synergy in conductive polymer-filled metal-organic frameworks for dendrite-free li plating/stripping with high coulombic efficiency.Angew Chem Int Ed Engl2022;61:e202116291

[32]

Lin D,Liang Z.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nat Nanotechnol2016;11:626-32

[33]

Cai Q,Lin K.Gradient structure design of a floatable host for preferential lithium deposition.Nano Lett2021;21:10252-9

[34]

Hu Z,Zhou M.Lithiophilic carbon nanofiber/graphene nanosheet composite scaffold prepared by a scalable and controllable biofabrication method for ultrastable dendrite-free lithium-metal anodes.Small2022;18:e2104735

[35]

Liu F,Wu Y.Dynamic spatial progression of isolated lithium during battery operations.Nature2021;600:659-63

[36]

Piao Z,Liu Y,Cheng HM.A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries.Adv Mater2023;35:e2206009

[37]

Jin C,Sheng O.Rejuvenating dead lithium supply in lithium metal anodes by iodine redox.Nat Energy2021;6:378-87

[38]

Jiang Z,Liang X.Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries.Adv Funct Mater2021;31:2005991

[39]

Lee SH,Ming J.Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry.Adv Energy Mater2020;10:2000567

[40]

Reinoso DM.Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications.Energy Storage Mater2022;52:430-64

[41]

Zhang J,Li Q.Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries.Energy Storage Mater2023;54:440-9

[42]

Xu L,Zhao C.Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries.Adv Energy Mater2021;11:2002360

[43]

Famprikis T,Dawson JA,Masquelier C.Fundamentals of inorganic solid-state electrolytes for batteries.Nat Mater2019;18:1278-91

[44]

Yu Z,Bao Z.Design principles of artificial solid electrolyte interphases for lithium-metal anodes.Cell Rep Phys Sci2020;1:100119

[45]

Gao RM,Wang CY,Cao FF.Fatigue-resistant interfacial layer for safe lithium metal batteries.Angew Chem Int Ed Engl2021;60:25508-13

[46]

Sun Y,Wang J.A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition.Adv Mater2019;31:e1806541

[47]

Yang C,He S,Hitz E.Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode.Adv Mater2017;29

[48]

Dong K,Tan J.Unravelling the mechanism of lithium nucleation and growth and the interaction with the solid electrolyte interface.ACS Energy Lett2021;6:1719-28

[49]

Hou LP,Xie J.Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries.Angew Chem Int Ed Engl2022;61:e202201406

[50]

Zheng G,Chen S.Additives synergy for stable interface formation on rechargeable lithium metal anodes.Energy Storage Mater2020;29:377-85

[51]

Hagopian A,Filhol J.Thermodynamic origin of dendrite growth in metal anode batteries.Energy Environ Sci2020;13:5186-97

[52]

Rosso M,Brissot C,Lascaud S.Onset of dendritic growth in lithium/polymer cells.J Power Sources2001;97-8:804-6

[53]

Chen J,Sun N.A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode.ACS Energy Lett2022;7:1594-603

[54]

Fan L,Liu L.Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase.Adv Energy Mater2018;8:1802350

[55]

Zhang R,Cheng XB.The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?.Energy Storage Mater2019;23:556-65

[56]

Sun X,Ma Q,Wang W.Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries.Angew Chem Int Ed Engl2020;59:6665-74

[57]

Yan K,Lee H.Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth.Nat Energy2016;1:16010

[58]

Liu W,Pei A.Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement.J Am Chem Soc2016;138:15443-50

[59]

Li D,Gao Y,Wang L.Inverted anode structure for long-life lithium metal batteries.Adv Energy Mater2022;12:2200584

[60]

Huang S,Ma L.Effectively regulating more robust amorphous Li clusters for ultrastable dendrite-free cycling.Adv Sci2021;8:e2101584 PMCID:PMC8498897

[61]

Zhang S,Li D.Commercial carbon cloth: an emerging substrate for practical lithium metal batteries.Energy Storage Mater2022;48:172-90

[62]

Chen Z,Wang H.Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition.Nano Energy2022;93:106836

[63]

Du J,Wan M.Doctor-blade casting fabrication of ultrathin Li metal electrode for high-energy-density batteries.Adv Energy Mater2021;11:2102259

[64]

Jiang G,Zheng N.MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes.Energy Storage Mater2019;23:181-9

[65]

Chen Y,Cheng Y.Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering.Energy Storage Mater2020;26:56-64

[66]

Zhou T,Wang Z.Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode.Adv Funct Mater2020;30:1909159

[67]

Shen Y,Zhang Y.MXene/ZnO flexible freestanding film as a dendrite-free support in lithium metal batteries.J Mater Chem A2022;10:17199-207

[68]

Wang SH,Zuo TT.Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels.Adv Mater2017;29:1703729

[69]

Liu S,Li F,Li G.Regulating lithium deposition behavior by electrokinetic effects in a high-zeta-potential h-BN/zinc-lithium alloy for high-performance lithium metal anodes.J Mater Chem A2022;10:5221-9

[70]

Xu H,Zhang C.Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries.Energy Environ Sci2019;12:2991-3000

[71]

Fang S,Hoefling A.A mismatch electrical conductivity skeleton enables dendrite-free and high stability lithium metal anode.Nano Energy2021;89:106421

[72]

Zhao P,Li T.Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate.Energy Storage Mater2020;33:158-63

[73]

Feng X,Liu M.Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials.Energy Environ Sci2021;14:2036-89

[74]

Liu Y,Zhang S.Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode.Energy Storage Mater2019;18:320-7

[75]

Chen X,Hou TZ.Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes.Sci Adv2019;5:eaau7728 PMCID:PMC6377277

[76]

Feng X,Gao B,He X.Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries.Nano Res2022;15:352-60

[77]

Ge J,Liu T.Rational design of a self-supporting skeleton decorated with dual lithiophilic Sn-containing and N-doped carbon tubes for dendrite-free lithium metal anodes.J Mater Chem A2022;10:11458-69

[78]

Zhang R,Chen X.Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes.Angew Chem Int Ed Engl2017;56:7764-8

[79]

Liu L,Li JY,Guo YG.Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes.Adv Mater2018;30:1706216

[80]

Lyu Z,Guo R.3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability.Energy Storage Mater2020;24:336-42

[81]

Liu K,Xie W.Oxygen-rich carbon nanotube networks for enhanced lithium metal anode.Energy Storage Mater2018;15:308-14

[82]

Li K,Ma J,Mu D.A 3D and stable lithium anode for high-performance lithium-iodine batteries.Adv Mater2019;31:e1902399

[83]

Xu Z,Xu Z,Wang X.N, O-codoped carbon nanosheet array enabling stable lithium metal anode.Adv Funct Mater2021;31:2102354

[84]

Li D,Zhang Q.Pencil-drawing on nitrogen and sulfur co-doped carbon paper: an effective and stable host to pre-store Li for high-performance lithium-air batteries.Energy Storage Mater2020;26:593-603

[85]

Xie Y,Yu J.A novel dendrite-free lithium metal anode via oxygen and boron codoped honeycomb carbon skeleton.Small2022;18:e2104876

[86]

Yang Z,Zhai P.Single-atom reversible lithiophilic sites toward stable lithium anodes.Adv Energy Mater2022;12:2103368

[87]

Zhai P,Yang W.Lithium metal anodes: uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes.Adv Energy Mater2019;9:1804019

[88]

Liu H,Cheng XB.Lithium metal anodes: uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries.Small Methods2019;3:1800354

[89]

Wang Y,Li Z.Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries.Energy Storage Mater2022;53:156-82

[90]

Liu Y,Liang Z,Yan K.Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode.Nat Commun2016;7:10992

[91]

Liu Y,Hu X.Lithiophilic sites dependency of lithium deposition in Li metal host anodes.Nano Energy2022;94:106883

[92]

Wu S,Lan M.Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes.Adv Mater2018;30:1705830

[93]

Zhang C,Zhou G.Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries.Adv Energy Mater2018;8:1703404

[94]

Mei Y,Hao Y.High-lithiophilicity host with micro/nanostructured active sites based on wenzel wetting model for dendrite-free lithium metal anodes.Adv Funct Mater2021;31:2106676

[95]

Zhang Q,Sun C,Wang K.Surface modification of Ni foam for stable and dendrite-free lithium deposition.Chem Eng J2021;405:127022

[96]

Chen Y,Gao L.Two birds with one stone: using indium oxide surficial modification to tune inner helmholtz plane and regulate nucleation for dendrite-free lithium anode.Small Methods2022;6:e2200113

[97]

Xu Y,Yang H.Thermodynamic regulation of dendrite-free Li plating on Li3Bi for stable lithium metal batteries.Nano Lett2021;21:8664-70

[98]

Tabassum H,Mahmood A.A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium-ion battery anodes.Adv Mater2018;30:1705441

[99]

Zheng J,Zhang J.Recent advances in nanostructured transition metal nitrides for fuel cells.J Mater Chem A2020;8:20803-18

[100]

Lei M,Ren L.Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes.ACS Appl Mater Interfaces2019;11:30992-8

[101]

Xu R,Tang X.Nanoarray architecture of ultra-lithiophilic metal nitrides for stable lithium metal anodes.Small2023;19:e2205709

[102]

Luo L,Yaghoobnejad Asl H.A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell.Adv Mater2019;31:e1904537

[103]

Shen X,Li B.Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes.Adv Funct Mater2022;32:2206388

[104]

Lin K,Liu M.Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes.Adv Funct Mater2019;29:1903229

[105]

Fu X,Zhang L,Deng Y.A 3D framework with an in situ generated Li3N solid electrolyte interphase for superior lithium metal batteries.Adv Funct Mater2023;33:2308022

[106]

Lee D,Kwon J.Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes.Adv Mater2020;32:e1905573

[107]

Zhang S,Liu Z.Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates.ACS Energy Lett2021;6:4118-26

[108]

Jin S,Niu Y.Solid-solution-based metal alloy phase for highly reversible lithium metal anode.J Am Chem Soc2020;142:8818-26

[109]

Yang T,Wu F.A soft lithiophilic graphene aerogel for stable lithium metal anode.Adv Funct Mater2020;30:2002013

[110]

Zheng H,Chen Q.3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode.J Mater Chem A2020;8:313-22

[111]

Li W,Chen M.Hedging Li dendrite formation by virtue of controllable tip effect.J Mater Chem A2022;10:15161-8

[112]

Li L,Yang J.A dual-confined lithium nucleation and growth design enables dendrite-free lithium metal batteries.J Mater Chem A2022;10:11659-66

[113]

Gao P,Zhang X.Optimization of magnesium-doped lithium metal anode for high performance lithium metal batteries through modeling and experiment.Angew Chem Int Ed Engl2021;60:16506-13

[114]

Xu Y,Zhou G.Solubility-dependent protective effects of binary alloys for lithium anode.ACS Appl Energy Mater2020;3:2278-84

[115]

Liang Z,Zhao J.Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.Proc Natl Acad Sci U S A2016;113:2862-7 PMCID:PMC4801240

[116]

Wan M,Wang L.Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode.Nat Commun2020;11:829 PMCID:PMC7012843

[117]

Zhou Y,Zhao K.A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes.Energy Stor Mater2021;39:403-11

[118]

Liu Y,Liu F.Basal nanosuit of graphite for high-energy hybrid Li batteries.ACS Nano2020;14:1837-45

[119]

Pu J,Shen Z.Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes.Adv Funct Mater2018;28:1804133

[120]

Chen J,Chen X,Li Z.Li2S-based anode-free full batteries with modified Cu current collector.Energy Storage Mater2020;30:179-86

[121]

Zhao Z,Lee T,Xiang D.Smart eutectic gallium-indium: from properties to applications.Adv Mater2023;35:e2203391

[122]

Zhou J,Wang Z.Healable lithium alloy anode with ultrahigh capacity.Nano Lett2021;21:5021-7

[123]

Li H,Matsumoto S.Circumventing huge volume strain in alloy anodes of lithium batteries.Nat Commun2020;11:1584 PMCID:PMC7154030

[124]

Sun B,Xu W.A gradient topology host for a dendrite-free lithium metal anode.Nano Energy2022;94:106937

[125]

Wu J,Zhang X.Gradient design for high-energy and high-power batteries.Adv Mater2022;34:e2202780

[126]

Le T,Chen M.Lithium metal anodes: a triple-gradient host for long cycling lithium metal anodes at ultrahigh current density (small 30/2020).Small2020;16:e2001992

[127]

Guo W,Guan X,Liu X.Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes.Adv Energy Mater2019;9:1900193

[128]

Li J,Chiang SW.A conductive-dielectric gradient framework for stable lithium metal anode.Energy Storage Mater2020;24:700-6

[129]

Zhou S,Chang Z.Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries.Energy Storage Mater2022;47:482-90

[130]

Nan Y,Shi Y,Li B.Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode.Small2019;15:e1903520

[131]

Lv Y,Li C.Bottom-up Li deposition by constructing a multiporous lithiophilic gradient layer on 3D Cu foam for stable Li metal anodes.ACS Sustainable Chem Eng2022;10:7188-95

[132]

Li T,Chen L.Bidirectional lithiophilic gradients modification of ultralight 3D carbon nanofiber host for stable lithium metal anode.Small2022;18:e2203273

[133]

Huang S,Fan LZ.Confined lithium deposition triggered by an integrated gradient scaffold for a lithium-metal anode.ACS Appl Mater Interfaces2022;14:17539-46

[134]

Yu Z,Xue W.Uniformizing the lithium deposition by gradient lithiophilicity and conductivity for stable lithium-metal batteries.Nanoscale2023;15:4529-35

[135]

Hong SH,Kim JH.Electrical conductivity gradients: electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries.Adv Funct Mater2020;30:1908868

[136]

Pu J,Zhang K.Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits.Nat Commun2019;10:1896 PMCID:PMC6478682

[137]

Yun J,Won E.Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode.ACS Energy Lett2020;5:3108-14

[138]

Liu H,Wang P.A novel design of 3D carbon host for stable lithium metal anode.Carbon Energy2022;4:654-64

[139]

Pan J,Wu H.Lithium dredging and capturing dual-gradient framework enabling step-packed deposition for dendrite-free lithium metal anodes.Adv Energy Mater2024;14:2302862

[140]

Wang D,Liu F.Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries.Nano Lett2021;21:4757-64

[141]

Jiang J,Kou Z.Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes.Energy Storage Mater2020;29:84-91

[142]

Li NW,Yin YX.A flexible solid electrolyte interphase layer for long-life lithium metal anodes.Angew Chem Int Ed Engl2018;57:1505-9

PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

/