Two-dimensional (2D) materials for 3D printed micro-supercapacitors and micro-batteries

Ghuzanfar Saeed , Taehun Kang , Jin Suk Byun , Donghyun Min , Jun Su Kim , Shrikant Vaiju Sadavar , Ho Seok Park

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400023

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400023 DOI: 10.20517/energymater.2023.81
Review

Two-dimensional (2D) materials for 3D printed micro-supercapacitors and micro-batteries

Author information +
History +
PDF

Abstract

Two-dimensional (2D) materials display a unique set of physical/chemical properties and are considered potential building blocks for the manufacturing of microstructured materials for a number of applications. Prominent applications range from advanced electronics to miniaturized electrochemical energy storage devices (EESDs). Herein, we present a comprehensive and critical review of the recent developments in design and microfabrication of 2D-driven microscale electrodes for three-dimensional (3D)-printed micro-supercapacitors and micro-batteries. Firstly, we systematically discuss the advantages and disadvantages associated with various microfabrication techniques such as stereolithography, fused deposition modeling, inkjet printing, and direct ink writing. Next, key parameters disclosing the relationship between the characteristics of 2D-based materials and extrusion-driven 3D printing process for the development of versatile and sustainable EESDs are highlighted. 2D materials utilized for the construction of microelectrodes for supercapacitors (e.g., electric double layer capacitors (EDLCs), pseudocapacitors, and hybrid capacitors) and batteries (e.g., Li-based systems and next-generation systems, e.g., sodium-ion batteries and zinc-ion batteries) along with their prominent electrochemical contributions in relation to obtained 3D-printed architectures are discussed in detail. To promote the development of 2D materials-driven high-performance microscale EESDs, the relevant challenges and future research opportunities are also addressed.

Keywords

2D materials / 3D printing / patterning / micro-supercapacitors / micro-batteries / energy storage

Cite this article

Download citation ▾
Ghuzanfar Saeed, Taehun Kang, Jin Suk Byun, Donghyun Min, Jun Su Kim, Shrikant Vaiju Sadavar, Ho Seok Park. Two-dimensional (2D) materials for 3D printed micro-supercapacitors and micro-batteries. Energy Materials, 2024, 4(3): 400023 DOI:10.20517/energymater.2023.81

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu M.Tiny robots and sensors need tiny batteries-here’s how to do it.Nature2021;589:195-7

[2]

Yu L,Wei C,Shao Y.3D printing of NiCoP/Ti3C2MXene architectures for energy storage devices with high areal and volumetric energy density.Nanomicro Lett2020;12:143 PMCID:PMC7770976

[3]

Jin J,Chen Q.A better Zn-Ion storage device: recent progress for Zn-Ion hybrid supercapacitors.Nanomicro Lett2022;14:64 PMCID:PMC8866629

[4]

Hur JI,Dunn B.High areal energy density 3D lithium-ion microbatteries.Joule2018;2:1187-201

[5]

Zhang P,Yu M,Feng X.Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems.Chem Soc Rev2018;47:7426-51

[6]

Pan X,Xu L,Yan M.On-chip micro/nano devices for energy conversion and storage.Nano Today2019;28:100764

[7]

Liu H,Zheng X,Duan H.Emerging miniaturized energy storage devices for microsystem applications: from design to integration.Int J Extrem Manuf2020;2:042001

[8]

Jia R,Qu F.Flexible on-chip micro-supercapacitors: efficient power units for wearable electronics.Energy Stor Mater2020;27:169-86

[9]

Sumboja A,Zheng WG,Zhang H.Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design.Chem Soc Rev2018;47:5919-45

[10]

Chang Kim M,Alam A.Ultrafine nanoparticles of tin-cobalt-sulfide decorated over 2D MXene sheets as a cathode material for high-performance asymmetric supercapacitor.J Ind Eng Chem.2023;124:294-303

[11]

Zhang L,Li OL.FeF3·0.33H2O@C nanocomposites derived from pomegranate structure as high-performance cathodes for sodium- and lithium-ion batteries.Jops2022;547:232014

[12]

Yu L,Saeed G,Kim KH.Hybrid ZnSe-SnSe2 nanoparticles embedded in N-doped carbon nanocube heterostructures with enhanced and ultra-stable lithium-storage performance.ChemElectroChem2021;8:4732-44

[13]

Brown E,Tekik H.3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes.Mater Design2019;170:107689

[14]

Delmas C.Sodium and sodium-ion batteries: 50 years of research.Adv Energy Mater2018;8:1703137

[15]

Zhu Z,Hu S.Recent advances in high-performance microbatteries: construction, application, and perspective.Small2020;16:e2003251

[16]

Zhang L,Wu Z.Micro-supercapacitors powered integrated system for flexible electronics.Energy Stor Mater2020;32:402-17

[17]

Chhowalla M,Eda G,Loh KP.The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.Nat Chem2013;5:263-75

[18]

Peng X,Wu C.Two dimensional nanomaterials for flexible supercapacitors.Chem Soc Rev2014;43:3303-23

[19]

Shao M,Li Z,Evans DG.Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications.Chem Commun2015;51:15880-93

[20]

Zhang H.Ultrathin two-dimensional nanomaterials.ACS Nano2015;9:9451-69

[21]

Novoselov KS,Morozov SV.Electric field effect in atomically thin carbon films.Science2004;306:666-9

[22]

Zhang Y,Stormer HL.Experimental observation of the quantum Hall effect and Berry's phase in graphene.Nature2005;438:201-4

[23]

Akinwande D,Hone J.Two-dimensional flexible nanoelectronics.Nat Commun2014;5:5678

[24]

Ambrosi A.3D-printing technologies for electrochemical applications.Chem Soc Rev2016;45:2740-55

[25]

Qiu L,Li D.Multifunctional cellular materials Based on 2D nanomaterials: prospects and challenges.Adv Mater2018;30:1704850

[26]

Garg R,Agarwal M.A review on MXene for energy storage application: effect of interlayer distance.Mater Res Express2020;7:022001

[27]

Li K,Wang H.3D MXene architectures for efficient energy storage and conversion.Adv Funct Mater2020;30:2000842

[28]

Talaie E,Sun X,Liang X.Methods and protocols for electrochemical energy storage materials research.Chem Mater2017;29:90-105

[29]

Zhou X,Wan L.Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries.Nano Res2012;5:845-53

[30]

Zheng S,Das P,Bao X.The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries.Adv Mater2019;31:e1900583

[31]

Wang Z,Zhou Y,Xu S.Miniaturized lithium-ion batteries for on-chip energy storage.Nanoscale Adv2022;4:4237-57 PMCID:PMC9552904

[32]

Zhang W,Zhang X,Zhang G.3D printed micro-electrochemical energy storage devices: from design to integration.Adv Funct Mater2021;31:2104909

[33]

Jabbar Khan A,Khan S.3D printed micro-electrochemical energy storage devices.Batteries Supercaps2023;6:e202300190

[34]

Bounor B,Douard C,Brousse T.On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density.Energy Stor Mater2021;38:520-7

[35]

Xu Y,Li C.Self-assembled graphene hydrogel via a one-step hydrothermal process.ACS Nano2010;4:4324-30

[36]

Xiong C,Lin X.The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor.Compos Part B-Eng2019;165:10-46

[37]

Ashby DS,Lai C,Dunn BS.Patternable, solution-processed ionogels for thin-film lithium-ion electrolytes.Joule2017;1:344-58

[38]

Alam A,Kim KH.Metal-organic framework-derived NiS@Cobalt-Molybdenum layered double hydroxides shell@core as cathode and CoFe2O4-nanoparticles@MXene shell@core as anode materials for ultra-high energy-density flexible asymmetric supercapacitor.J Energy Stor2022;55:105592

[39]

Soram BS,Thangjam IS,Lee JH.One-step electrodeposited MoS2@Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors.J Mater Chem A2020;8:24040-52

[40]

Wang L,Jia W,Gao P.Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries.J Power Sources2017;342:175-82

[41]

Gandla D.Progress report on atomic layer deposition toward hybrid nanocomposite electrodes for next generation supercapacitors.Adv Mater Inter2019;6:1900678

[42]

Saeed G,Kim NH.Fabrication of 3D graphene-CNTs/α-MoO3 hybrid film as an advance electrode material for asymmetric supercapacitor with excellent energy density and cycling life.Chem Eng J2018;352:268-76

[43]

Lobe S,Uhlenbruck S.Physical vapor deposition in solid-state battery development: from materials to devices.Adv Sci2021;8:e2002044 PMCID:PMC8188201

[44]

Zeng L,Yao Y,Niu S.Recent progresses of 3D printing technologies for structural energy storage devices.Mater Today Nano2020;12:100094

[45]

Zhang F,Viswanathan VV.3D printing technologies for electrochemical energy storage.Nano Energy2017;40:418-31

[46]

Egorov V,Zhang Y,O'Dwyer C.Evolution of 3D printing methods and materials for electrochemical energy storage.Adv Mater2020;32:e2000556

[47]

Cheng M,Shahbazian-yassar R.3D printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures.Batteries Supercaps2020;3:130-46

[48]

Gao T,Yu J.3D printing of tunable energy storage devices with both high areal and volumetric energy densities.Adv Energy Mater2019;9:1802578

[49]

Guo B,Yu S,Zhi C.3D printing of reduced graphene oxide aerogels for energy storage devices: a paradigm from materials and technologies to applications.Energy Stor Mater2021;39:146-65

[50]

Guo H,Bai S.Recent advances on 3D printing graphene-based composites.Nano Mater Sci2019;1:101-15

[51]

Wang J,Fan Z,Wang B.Ink-based 3D printing technologies for graphene-based materials: a review.Adv Compos Hybrid Mater2019;2:1-33

[52]

Pang Y,Chu Y.Additive manufacturing of batteries.Adv Funct Mater2020;30:1906244

[53]

Tagliaferri S,Mattevi C.Direct ink writing of energy materials.Mater Adv2021;2:540-63

[54]

Tian X,Yuan S,Tor SB.Emerging 3D-printed electrochemical energy storage devices: a critical review.Adv Energy Mater2017;7:1700127

[55]

Xu X,Ding J.3D printing of next-generation electrochemical energy storage devices: from multiscale to multimaterial.Energy Environ Mater2022;5:427-38

[56]

Zhu C,Qian F.3D printed functional nanomaterials for electrochemical energy storage.Nano Today2017;15:107-20

[57]

Yao B,Zhang J.Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading.Joule2019;3:459-70

[58]

Zeng L,Du D,Li X.Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview.Adv Sci2023;10:2303716

[59]

Wei M,Wang W,Zhou C.3D direct writing fabrication of electrodes for electrochemical storage devices.Jops2017;354:134-47

[60]

Lyu Z,Koh JJ.Design and manufacture of 3D-printed batteries.Joule2021;5:89-114

[61]

Kim H,Chavez LA,Tseng TB.Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing.Ceram Int2018;44:9037-44

[62]

Maurel A,Grugeon S,Dupont L.Environmentally friendly lithium-terephthalate/polylactic acid composite filament formulation for lithium-ion battery 3D-printing via fused deposition modeling.ECS J Solid State Sci Technol2021;10:037004

[63]

Sztymela K,Rossignol F.Fabrication of modern lithium ion batteries by 3D inkjet printing: opportunities and challenges.Heliyon2022;8:e12623 PMCID:PMC9830180

[64]

Pei M,Yao F.3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures.J Mater Chem A2021;9:25237-57

[65]

Gulzar U,O'dwyer C.Additive manufacturing for energy storage: methods, designs and material selection for customizable 3d printed batteries and supercapacitors.Curr Opin Electroche2020;20:46-53

[66]

Gokhare VG,Shinde DK. A review paper on 3D-printing aspects and various processes used in the 3D-printing. Available from: https://www.ijert.org/a-review-paper-on-3d-printing-aspects-and-various-processes-used-in-the-3d-printing [Last accessed on 7 Mar 2024]

[67]

Ge Q,Wang Z.Projection micro stereolithography based 3D printing and its applications.Int J Extrem Manuf2020;2:022004

[68]

Katsuyama Y,Kobayashi H.Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors.Adv Funct Mater2022;32:2201544

[69]

Li L,Chen M,Russell TP.3D Printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures.Nano Lett2023;23:155-62

[70]

Sahoo R,Pal T.2D materials for renewable energy storage devices: outlook and challenges.Chem Commun2016;52:13528-42

[71]

Dong Y,Ren W,Bao X.Graphene: a promising 2D material for electrochemical energy storage.Sci Bull2017;62:724-40

[72]

Wang L,Shu T.Functional Inks for printable energy storage applications based on 2D materials.ChemSusChem2020;13:1330-53

[73]

Naficy S,Aboutalebi SH.Graphene oxide dispersions: tuning rheology to enable fabrication.Mater Horiz2014;1:326-31

[74]

Jiang Y,Liu Y,Gao C.Three-dimensional printing of graphene-based materials for energy storage and conversion.SusMat2021;1:304-23

[75]

Tian X.Direct ink writing of 2D material-based supercapacitors.2D Mater2022;9:012001

[76]

Xie Y,Huang H.High-voltage asymmetric MXene-based on-chip micro-supercapacitors.Nano Energy2020;74:104928

[77]

Zhu Y,Ma J,Zheng S.Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries.Energy Stor Mater2022;51:500-26

[78]

Zhang CJ,Kremer MP.Additive-free MXene inks and direct printing of micro-supercapacitors.Nat Commun2019;10:1795 PMCID:PMC6470171

[79]

Yang W,Byun JJ.3D printing of freestanding MXene architectures for current-collector-free supercapacitors.Adv Mater2019;31:e1902725

[80]

Akuzum B,Anasori B.Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes.ACS Nano2018;12:2685-94

[81]

Bao C,Wilkie CA.On the dispersion systems of graphene-like two-dimensional materials: From fundamental laws to engineering guidelines.Carbon2016;107:774-82

[82]

García-Tuñón E,Zheng H,Leong A.Graphene oxide: an all-in-one processing additive for 3D printing.ACS Appl Mater Interfaces2017;9:32977-89

[83]

Panagiotopoulos A,Tagliaferri S.3D printed inks of two-dimensional semimetallic MoS2 /TiS2 nanosheets for conductive-additive-free symmetric supercapacitors.J Mater Chem A2023;11:16190-200

[84]

Zhou G,Liu C,Mei C.3D printed Ti3C2 TxMXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance.Adv Funct Mater2022;32:2109593

[85]

Tang X,Cai Z.Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels.ACS Nano2018;12:3502-11

[86]

Yao B,Zhang H.3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels.Adv Mater2020;32:e1906652

[87]

Zheng Y,Jia D,Liu J.Thermally-treated and acid-etched carbon fiber cloth based on pre-oxidized polyacrylonitrile as self-standing and high area-capacitance electrodes for flexible supercapacitors.Chem Eng J2019;364:70-8

[88]

Zhu C,Qian F.Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores.Nano Lett2016;16:3448-56

[89]

Chandrasekaran S,Liu T.Direct ink writing of organic and carbon aerogels.Mater Horiz2018;5:1166-75

[90]

Wang G,Lu X.Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability.Adv Mater2014;26:2676-82, 2615

[91]

Wang Y,Wang G.Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density.Adv Funct Mater2020;30:1907284

[92]

Nakhanivej P,Xiong P.Two-dimensional pseudocapacitive nanomaterials for high-energy- and high-power-oriented applications of supercapacitors.ACC Mater Res2021;2:86-96

[93]

Kyeremateng NA,Pech D.Microsupercapacitors as miniaturized energy-storage components for on-chip electronics.Nat Nanotechnol2017;12:7-15

[94]

Kamboj N,Das M,Hazra KS.Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device.Energy Environ Sci2019;12:2507-17

[95]

Jiang Y,Huang T.Direct 3D printing of ultralight graphene oxide aerogel microlattices.Adv Funct Mater2018;28:1707024

[96]

Bhojane P.Recent advances and fundamentals of pseudocapacitors: materials, mechanism, and its understanding.J Energy Stor2022;45:103654

[97]

Kim HS,Lin H.Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x..Nat Mater2017;16:454-60

[98]

Wang Y,Wang P.Urea-treated wet-spun PEDOT: PSS fibers for achieving high-performance wearable supercapacitors.Compos Commun2021;27:100885

[99]

Augustyn V,Dunn B.Pseudocapacitive oxide materials for high-rate electrochemical energy storage.Energy Environ Sci2014;7:1597

[100]

Lai F,Huang Y,Liu T.Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction.ACS Appl Mater Interfaces2016;8:3558-66

[101]

Saeed G,Kumar S,Lee JH.ZnS-Ni7S6 nanosheet arrays wrapped with nanopetals of Ni(OH)2 as a novel core-shell electrode material for asymmetric supercapacitors with high energy density and cycling stability performance.ACS Appl Mater Interfaces2020;12:47377-88

[102]

Alam A,Lim S.One-step synthesis of 2D-2D Co(OH)2-MoSe2 hybrid nanosheets as an efficient electrode material for high-performance asymmetric supercapacitor.J Electroanal Chem2020;879:114775

[103]

Kumar KS,Jung Y.Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications.ACS Energy Lett2018;3:482-95

[104]

Zong W,Miao YE,Lai F.Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices.Chem Commun2022;58:2075-95

[105]

Huang X,Yang D.A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode.Adv Sci2021;8:e2101664 PMCID:PMC8456213

[106]

Yao B,Zhang H.Printing porous carbon aerogels for low temperature supercapacitors.Nano Lett2021;21:3731-7.

[107]

Yu L,Shao Y,Sun J.Versatile N-doped MXene ink for printed electrochemical energy storage application.Adv Energy Mater2019;9:1901839

[108]

Orangi J,Davis VA.3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities.ACS Nano2020;14:640-50

[109]

Sadavar S,Kang T.Anion storage for hybrid supercapacitor.Mater Today Energy2023;37:101388

[110]

Zhao J,Lu H.Additive manufacturing of two-dimensional conductive metal-organic framework with multidimensional hybrid architectures for high-performance energy storage.Nano Lett2022;22:1198-206

[111]

Yang Z,Yang T.3D printing of carbon tile-modulated well-interconnected hierarchically porous pseudocapacitive electrode.Energy Stor Mater2023;54:51-9

[112]

Zhao J,Zhao X.Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities.Adv Funct Mater2019;29:1900809

[113]

Zhang C,Seral-ascaso A.Stamping of flexible, coplanar micro-supercapacitors using MXene inks.Adv Funct Mater2018;28:1705506

[114]

Zhao Y,Zhu K,Zhao Z.Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances.Adv Compos Hybrid Mater2022;5:1537-47

[115]

Pender JP,Youn DH.Electrode degradation in lithium-ion batteries.ACS Nano2020;14:1243-95

[116]

Chen C,Zhou T.Interface aspects in all-solid-state Li-based batteries reviewed.Adv Energy Mater2021;11:2003939

[117]

Imanishi N.Rechargeable lithium-air batteries: characteristics and prospects.Mater Today2014;17:24-30

[118]

Yang R,Yang C,Cheng H.Recent progress in 3D printing of 2D material-based macrostructures.Adv Mater Tech2020;5:1901066

[119]

Ye J,Wang YM,Biener MM.Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.ACS Nano2015;9:2194-202

[120]

Zhang H,Braun PV.Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes.Nat Nanotechnol2011;6:277-81

[121]

Hassan K,Tung TT.Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications.Nanoscale2020;12:19007-42

[122]

Sun C,Shi X,Liang J.3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery.Chem Eng J2020;381:122641

[123]

Rosenman A,Salitra G,Garsuch A.Review on Li-sulfur battery systems: an integral perspective.Adv Energy Mater2015;5:1500212

[124]

Shen K,Li B,Yang S.3D printing sulfur copolymer-graphene architectures for Li-S batteries.Adv Energy Mater2018;8:1701527

[125]

Chen C,He W,Hao Q.3D printed high-loading lithium-sulfur battery toward wearable energy storage.Adv Funct Mater2020;30:1909469

[126]

Liu B,Xu W.Advancing lithium metal batteries.Joule2018;2:833-45

[127]

Ma J,Zhou F.All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density.Energy Stor Mater2023;54:304-12

[128]

Shen K,Shi Y,Li B.3D printing lithium salt towards dendrite-free lithium anodes.Energy Stor Mater2021;35:108-13

[129]

Lyu Z,Guo R.3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability.Energy Stor Mater2020;24:336-42

[130]

Gao X,Wang S.A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li-Se batteries.J Mater Chem A2020;8:278-86

[131]

Cai J,Fan Z.3D Printing of a V8C7-VO2 Bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries.Adv Mater2020;32:e2005967

[132]

Mubarak S,Byun H.Recent advances in 3D printed electrode materials for electrochemical energy storage devices.J Energy Chem2023;81:272-312

[133]

Bu F,Wang Q.Ultraviolet-assisted printing of flexible all-solid-state zinc batteries with enhanced interfacial bond.Chem Eng J2022;449:137710

[134]

Hwang JY,Sun YK.Sodium-ion batteries: present and future.Chem Soc Rev2017;46:3529-614.

[135]

Zhang T,Guo S.Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review.Energy Environ Sci2020;13:4625-65

[136]

Jia X,Neale ZG,Cao G.Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry.Chem Rev2020;120:7795-866

[137]

Lourenssen K,Ahmadpour F,Tasnim S.Vanadium redox flow batteries: a comprehensive review.J Energy Stor2019;25:100844

[138]

Zhu Y,Fang Z,Zhang X.Structural engineering of 2D nanomaterials for energy storage and catalysis.Adv Mater2018;30:e1706347

[139]

Pomerantseva E,Feng X,Gogotsi Y.Energy storage: the future enabled by nanomaterials.Science2019;366:eaan8285

[140]

Wang Z,Wang H.3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity.ACS Nano2022;16:9105-16

[141]

Li Q,Wang J.Direct ink writing (DIW) of graphene aerogel composite electrode for vanadium redox flow battery.Jops2022;542:231810

[142]

Ma H,Wang T.Tailoring pore structures of 3D printed cellular high-loading cathodes for advanced rechargeable Zinc-Ion batteries.Small2021;17:e2100746

[143]

Yang H,Li W.A simple and effective host for sodium metal anode: a 3D-printed high pyrrolic-N doped graphene microlattice aerogel.J Mater Chem A2022;10:16842-52

[144]

Ma J,Chi L.3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability.Adv Mater2022;34:e2205569

[145]

Yan J,Kong D.3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode.J Mater Chem A2020;8:19843-54

PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

/