Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding

Fumiaki Amano , Keisuke Tsushiro

Energy Materials ›› 2024, Vol. 4 ›› Issue (1) : 400006

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (1) :400006 DOI: 10.20517/energymater.2023.77
Mini Review

Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding

Author information +
History +
PDF

Abstract

This review provides an overview of recent advancements in vapor-fed photoelectrochemical (PEC) systems specifically designed for utilizing water vapor as a hydrogen resource. The PEC system under water vapor feeding utilizes a proton exchange membrane as a solid polymer electrolyte. Additionally, it utilizes gas-diffusion photoelectrodes composed of a fibrous conductive substrate with macroporous structures. Herein, the porous photoelectrodes are composed of n-type oxides for oxygen evolution reactions and used with a Pt electrocatalyst cathode for hydrogen evolution reactions. The topics covered include the conceptual framework of vapor-fed PEC hydrogen production, strategic design of gas-phase PEC reaction interfaces, and development of porous photoanodes such as titanium dioxide (TiO2), strontium titanate (SrTiO3), tungsten trioxide (WO3), and bismuth vanadate (BiVO4). A significant enhancement in the PEC efficiency was achieved through the application of a thin proton-conducting ionomer film on these porous photoelectrodes for surface functionalization. The rational design of proton exchange membrane-based PEC cells will play a pivotal role in realizing renewable-energy-driven hydrogen production from atmospheric humidity in the air.

Keywords

Hydrogen production / oxygen evolution reaction / perfluoro sulfonic acid / photoelectrochemistry / polymer electrolyte membrane / solar fuel

Cite this article

Download citation ▾
Fumiaki Amano, Keisuke Tsushiro. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy Materials, 2024, 4(1): 400006 DOI:10.20517/energymater.2023.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hisatomi T.Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts.Nat Catal2019;2:387-99

[2]

Takata T.Particulate photocatalysts for water splitting: recent advances and future prospects.ACS Energy Lett2019;4:542-9

[3]

Kim JH,Sharma P,Lee JS.Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.Chem Soc Rev2019;48:1908-71

[4]

Yang W,Tan J,Moon J.Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting.Chem Soc Rev2019;48:4979-5015

[5]

Guo J,Zavabeti A.Hydrogen production from the air.Nat Commun2022;13:5046 PMCID:PMC9448774

[6]

Kumari S,Kumar B.Solar hydrogen production from seawater vapor electrolysis.Energy Environ Sci2016;9:1725-33

[7]

Lewis NS.Developing a scalable artificial photosynthesis technology through nanomaterials by design.Nat Nanotechnol2016;11:1010-9

[8]

Chabi S,Lewis NS.Membranes for artificial photosynthesis.Energy Environ Sci2017;10:1320-38

[9]

Suguro T,Takanabe K.Photocatalytic hydrogen production under water vapor feeding - a minireview.Energy Fuels2022;36:8978-94

[10]

Dionigi F,Pedersen T.Gas phase photocatalytic water splitting with Rh2-yCryO3/GaN:ZnO in μ-reactors.Energy Environ Sci2011;4:2937-42

[11]

Daeneke T,Atkin P.Surface water dependent properties of sulfur-rich molybdenum sulfides: electrolyteless gas phase water splitting.ACS Nano2017;11:6782-94

[12]

Suguro T,Kariya N.A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting.Nat Commun2022;13:5698 PMCID:PMC9519874

[13]

Amano F,Sato H,Sato H.Vapor-fed photoelectrolysis of water at 0.3 V using gas-diffusion photoanodes of SrTiO3 layers.Sustain Energy Fuels2020;4:1443-53

[14]

Spurgeon JM.Proton exchange membrane electrolysis sustained by water vapor.Energy Environ Sci2011;4:2993-8

[15]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[16]

Ichikawa S.Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis.Catal Today1996;27:271-7

[17]

Seger B.Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias.J Phys Chem C2009;113:18946-52

[18]

Li Y,Song W,Yi B.A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation.Int J Hydrogen Energy2011;36:14374-80

[19]

Rongé J,Kerkhofs S,Martens JA.Chronoamperometric study of membrane electrode assembly operation in continuous flow photoelectrochemical water splitting.Phys Chem Chem Phys2013;15:9315-25

[20]

Xu K,Norby T.Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting.Photochem Photobiol Sci2017;16:10-6

[21]

Georgieva J,Poulios I.An all-solid photoelectrochemical cell for the photooxidation of organic vapours under ultraviolet and visible light illumination.Electrochem Commun2009;11:1643-6

[22]

Iwu KO,Kuznetsov AY.Solid-state photoelectrochemical H2 generation with gaseous reactants.Electrochim Acta2013;97:320-5

[23]

Rongé J,Pulinthanathu Sree S.Air-based photoelectrochemical cell capturing water molecules from ambient air for hydrogen production.RSC Adv2014;4:29286-90

[24]

Amano F,Tsurui K,Ohno T.Photoelectrochemical homocoupling of methane under blue light irradiation.ACS Energy Lett2019;4:502-7

[25]

Amano F,Mukohara H,Tsurui K.Photoelectrochemical gas-electrolyte-solid phase boundary for hydrogen production from water vapor.Front Chem2018;6:598 PMCID:PMC6287029

[26]

Amano F,Shintani A.Solid polymer electrolyte-coated macroporous titania nanotube photoelectrode for gas-phase water splitting.ChemSusChem2019;12:1925-30

[27]

Amano F,Sato H.Photoelectrochemical water vapor splitting using an ionomer-coated rutile TiO2 thin layer on titanium microfiber felt as an oxygen-evolving photoanode.Sustain Energy Fuels2019;3:2048-55

[28]

Ta CXM,Furusho Y.A macroporous-structured WO3/Mo-doped BiVO4 photoanode for vapor-fed water splitting under visible light irradiation.ACS Sustain Chem Eng2020;8:9456-63

[29]

Amano F,Tsurui K.Fabrication of tungsten trioxide photoanode with titanium microfibers as a three dimensional conductive back contact.Mater Lett2017;199:68-71

[30]

Amano F.Electrochemical impedance spectroscopy of WO3 photoanodes on different conductive substrates: the interfacial charge transport between semiconductor particles and Ti surface.J Electroanal Chem2022;921:116685

[31]

Homura H,Abe R.Facile fabrication of photoanodes of tungsten(VI) oxide on carbon microfiber felts for efficient water oxidation under visible light.Chem Lett2014;43:1195-7

[32]

Homura H,Higashi M.Application of carbon microfiber felts as three-dimensional conductive substrate for efficient photoanodes of tungsten(VI) oxide.J Photochem Photobiol A2019;375:54-63

[33]

Stoll T,Tsampas MN.Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants.Int J Hydrog Energy2016;41:17807-17

[34]

Makarova MV,Nomura S.Direct electrochemical visualization of the orthogonal charge separation in anatase nanotube photoanodes for water splitting.ACS Catal2022;12:1201-8

[35]

Zafeiropoulos G,Kinge S,Tsampas MN.Solar hydrogen generation from ambient humidity using functionalized porous photoanodes.ACS Appl Mater Interfaces2019;11:41267-80

[36]

Zafeiropoulos G,Dogan I,van de Sanden M.Porous titania photoelectrodes built on a Ti-web of microfibers for polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell applications.Sol Energy Mater Sol Cells2018;180:184-95

[37]

Stoll T,Dogan I.Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes.Electrochem Commun2017;82:47-51

[38]

Xu K,Vøllestad E,Tang J.Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell.Int J Hydrog Energy2019;44:587-93

[39]

Kang X,Galeckas A.Water vapor photoelectrolysis in a solid-state photoelectrochemical cell with TiO2 nanotubes loaded with CdS and CdSe nanoparticles.ACS Appl Mater Interfaces2021;13:46875-85

[40]

Ta CXM,Amano F.Photoelectrochemical stability of WO3/Mo-doped BiVO4 heterojunctions on different conductive substrates in acidic and neutral media.Appl Surf Sci2021;548:149251

[41]

Zafeiropoulos G,Johnson H.Rational design of photoelectrodes for the fully integrated polymer electrode membrane-photoelectrochemical water-splitting system: a case study of bismuth vanadate.ACS Appl Energy Mater2021;4:9600-10

[42]

Amano F,Sakakura T,Haruyama T.Photoelectrochemical C-H activation of methane to methyl radical at room temperature.Catal Sci Technol2023;13:4640-5

[43]

Amano F,Furusho Y.Effect of conductive substrate on the photoelectrochemical properties of Cu2O film electrodes for methyl viologen reduction.J Photochem Photobiol A2020;389:112254

[44]

Caretti M,Kessler RA.Transparent porous conductive substrates for gas-phase photoelectrochemical hydrogen production.Adv Mater2023;35:e2208740

PDF

234

Accesses

0

Citation

Detail

Sections
Recommended

/