Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization

Yahao Du , Yuhong Liu , Feifei Cao , Huan Ye

Energy Materials ›› 2024, Vol. 4 ›› Issue (2) : 400014

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (2) :400014 DOI: 10.20517/energymater.2023.76
Article

Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization

Author information +
History +
PDF

Abstract

Although lithium-sulfur (Li-S) batteries have a high theoretical energy density, their practical applications are limited by rapid capacity fading and poor cycling stability due to the dissolution of high-order polysulfides in electrolytes and the sluggish kinetics of the solid-state Li2S2/Li2S redox reaction. Herein, a polysulfide sorbent and redox reaction catalytic promoter, Au quantum dots (Au QDs)-decorated MXene nanosheet, is designed by proposing defect-induced-reduced Ti3C2Tx (MXene) to improve the performance of Li-S batteries. The polar surface functional groups and high electronic conductivity of the MXene boost the conversion of sulfur/polysulfides and restrict the dissolution of the polysulfide shuttle. The Au QDs catalyst reduces the conversion reaction activation energy to achieve rapid solid-state Li2S2/Li2S reaction kinetics. Due to the adsorption-catalysis synergistic effect between MXene and Au QDs, an initial discharge capacity of 1,500 mA h g-1 is obtained, corresponding to a sulfur utilization of 90%. A Li-S battery based on the Au QDs@MXene-decorated separator exhibits a capacity retention rate of 71.0% for 300 cycles at 1 C.

Keywords

Lithium-sulfur battery / separator / polysulfide / catalyst / high sulfur utilization

Cite this article

Download citation ▾
Yahao Du, Yuhong Liu, Feifei Cao, Huan Ye. Defect-induced-reduced Au quantum Dots@MXene decorated separator enables lithium-sulfur batteries with high sulfur utilization. Energy Materials, 2024, 4(2): 400014 DOI:10.20517/energymater.2023.76

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manthiram A,Zu C.Lithium-sulfur batteries: progress and prospects.Adv Mater2015;27:1980-2006

[2]

Zheng ZJ,Guo ZP.Recent progress in designing stable composite lithium anodes with improved wettability.Adv Sci2020;7:2002212 PMCID:PMC7675197

[3]

Zhao Y,Li Z,Yao X.Constructing stable lithium metal anodes using a lithium adsorbent with a high Mn3+/Mn4+ ratio.Energy Mater2022;2:200034

[4]

Zhou G,Cui Y.Formulating energy density for designing practical lithium-sulfur batteries.Nat Energy2022;7:312-9

[5]

Yang CP,Ye H,Zhang J.Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries.ACS Appl Mater Interfaces2014;6:8789-95

[6]

Ye Z,Li L,Chen R.A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries.Adv Mater2020;32:e2002168

[7]

Ren Y,Fu YZ.Recent strategies for improving the performances of rechargeable lithium batteries with sulfur- and oxygen-based conversion cathodes.Energy Mater2023;3:300015

[8]

Wang Z,Ji H,Qian T.Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries.Adv Mater2022;34:e2203699

[9]

Ren W,Zhang S.Recent advances in shuttle effect inhibition for lithium sulfur batteries.Energy Stor Mater2019;23:707-32

[10]

Guo W,Si Y,Fu Y.Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery.Nat Commun2021;12:3031 PMCID:PMC8163853

[11]

Sun Z,Yin L.Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries.Nat Commun2017;8:14627 PMCID:PMC5337987

[12]

Li J,Chen Y.Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries.Adv Energy Mater2019;9:1901935

[13]

Li Z,Li P,Wang R.Enhanced chemisorption and catalytic effects toward polysulfides by modulating hollow nanoarchitectures for long-life lithium-sulfur batteries.Small2020;16:e1906114

[14]

Huang Y,Zhang C.Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries.Adv Sci2022;9:e2106004 PMCID:PMC9036004

[15]

Peng HJ,Chen X.Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries.Angew Chem Int Ed2016;55:12990-5

[16]

Du Z,Wang L.Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries.ACS Appl Mater Interfaces2017;9:43696-703

[17]

Boyjoo Y,Tian Q.Engineering nanoreactors for metal-chalcogen batteries.Energy Environ Sci2021;14:540-75

[18]

Wu F,Chen L.Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries.Energy Stor Mater2018;14:383-91

[19]

Hua W,Pei C.Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries.Adv Mater2021;33:e2101006

[20]

Zhang M,Xue L.Adsorption-catalysis design in the lithium-sulfur battery.Adv Energy Mater2020;10:1903008

[21]

Yao W,Yang C.P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion.Adv Mater2022;34:e2106370

[22]

Liu P,Tian X.Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance.ACS Appl Energy Mater2020;3:2708-18

[23]

Shi Z,Zhang Q.Electrocatalyst modulation toward bidirectional sulfur redox in Li-S batteries: from strategic probing to mechanistic understanding.Adv Energy Mater2022;12:2201056

[24]

Liang Z,Xu X.Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries.Adv Mater2022;34:e2200102

[25]

Zhang X,Zhang Y.Single zinc atom aggregates: synergetic interaction to boost fast polysulfide conversion in lithium-sulfur batteries.Adv Mater2023;35:e2208470

[26]

He J,Yaghoobnejad Asl H,Manthiram A.1T′-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li-S batteries.Adv Energy Mater2020;10:2001017

[27]

Zhou G,Jin Y.Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries.Proc Natl Acad Sci USA2017;114:840-5 PMCID:PMC5293031

[28]

Yang D,Tang P.A high conductivity 1D π-d Conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries.Adv Mater2022;34:e2108835

[29]

Ding Y,Wu J.Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries.Adv Mater2022;34:e2202256

[30]

Xiao Y,Guo S.An ultralight electroconductive metal-organic framework membrane for multistep catalytic conversion and molecular sieving in lithium-sulfur batteries.Energy Stor Mater2022;51:882-9

[31]

Wang J,Sun S.Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth.eScience2022;2:655-65

[32]

Shi H,Lu P.Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries.Adv Funct Mater2021;31:2102314

[33]

Fujita T,McKenna K.Atomic origins of the high catalytic activity of nanoporous gold.Nat Mater2012;11:775-80

[34]

Zhang C,Abdolhosseinzadeh S.Two-dimensional MXenes for lithium-sulfur batteries.InfoMat2020;2:613-38

[35]

Li P,Li Z.The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium-sulfur batteries.Adv Mater2021;33:e2007803

[36]

Lee DK,Yun H,Lee JW.CO2-oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption.ACS Nano2020;14:9744-54

[37]

Lei T,Lv W.Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries.Joule2018;2:2091-104

[38]

Gu S,Li X.Dispersing single-layered Ti3C2Tx nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li-S batteries.Energy Stor Mater2022;53:32-41

[39]

Zhang Y,He W.MXene and MXene-based materials for lithium-sulfur batteries.Prog Nat Sci Mater Int2021;31:501-13

[40]

Liu YH,Yang SL,Ye H.3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries.J Energy Chem2022;66:429-39

[41]

Liu C,Li R.Laser triggered exothermic chemical reaction in Au nanoparticle@Ti3C2 MXene membrane: a route toward efficient light to high-temperature pulse conversion.Chem Eng J2021;420:127672

[42]

Xiong D,Fang D.Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries.Small2021;17:e2007442

[43]

Yang C,Peng W,Fan X.In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries.Chem Eng J2022;427:131792

[44]

Fan FY,Chiang YM.Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries.Adv Mater2015;27:5203-9

[45]

Lang X,Fujita T.Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.Nat Nanotechnol2011;6:232-6

[46]

Yao WQ,Xu J.ZnS-SnS@NC Heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries.ACS Nano2021;15:7114-30

[47]

He JR,Chen YF.Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries.Adv Mater2017;29:1702707

PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

/