Review on Fe-based double perovskite cathode materials for solid oxide fuel cells

Manyi Xie , Changkun Cai , Xingyu Duan , Ke Xue , Hong Yang , Shengli An

Energy Materials ›› 2024, Vol. 4 ›› Issue (1) : 400007

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (1) :400007 DOI: 10.20517/energymater.2023.70
Review

Review on Fe-based double perovskite cathode materials for solid oxide fuel cells

Author information +
History +
PDF

Abstract

As a clean and efficient energy conversion device, solid oxide fuel cells have been garnering attention due to their environmentally friendly and fuel adaptability. Consequently, they have become one of the current research directions of new energy. The cathode, as the electrochemical reaction site of an oxidation atmosphere in solid oxide fuel cells, plays a key role in determining the output performance. In recent years, the development of double perovskite cathode materials with mixed ionic and electronic conductors has made significant progress in intermediate-temperature (600-800 °C) fuel cells. These materials have the potential to deliver higher power densities and improved stability, making them promising candidates for future fuel cell applications. The Fe-based double perovskite structure cathode material has gained extensive attention due to its adjustable crystal structure and performance, as it has A(A’) or B(B’) positions in its AA’BB’O6 structure. This material has several advantages, such as high oxygen catalytic activity, low thermal expansion coefficient, and compatibility with the thermal expansion of the electrolyte. An increasing number of researchers have been exploring the performance reaction mechanism of double perovskite by modifying and adjusting its material microstructure, crystal structure, and electronic structure. In this paper, the research progress of LnBaFe2O5 and Sr2Fe2-xMoxO6 double perovskite cathode materials is reviewed to highlight the effects of various modification methods developed on electrochemical performance of these materials. Furthermore, the potential future research directions of double perovskite cathode materials are prospected.

Keywords

Solid oxide fuel cell / double perovskite oxide / Sr2FeMoO6 / LnBaFe2O5 / electrochemical performance

Cite this article

Download citation ▾
Manyi Xie, Changkun Cai, Xingyu Duan, Ke Xue, Hong Yang, Shengli An. Review on Fe-based double perovskite cathode materials for solid oxide fuel cells. Energy Materials, 2024, 4(1): 400007 DOI:10.20517/energymater.2023.70

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Y,Guo J.Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review.Energy Mater2023;3:300045

[2]

Bianchi F,Conte F.Modelling and optimal management of renewable energy communities using reversible solid oxide cells.Appl Energy2023;334:120657

[3]

Zhu B,Xia C.A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology.Energy Mater2022;1:100002

[4]

van Biert L, Godjevac M, Visser K, Aravind P. A review of fuel cell systems for maritime applications.J Power Sources2016;327:345-64

[5]

Zhang Y,Zhao H.Double perovskite material as anode for solid oxide fuel cells.Prog Chem2022;34:272-84

[6]

Abdalla AM,Azad AT.Nanomaterials for solid oxide fuel cells: a review.Renew Sustain Energ Rev2018;82:353-68

[7]

Shu L,Hashim SS,Zhou W.Advanced perovskite anodes for solid oxide fuel cells: a review.Int J Hydrog Energy2019;44:31275-304

[8]

Singh M,Comini E.Solid oxide fuel cell: decade of progress, future perspectives and challenges.Int J Hydrog Energy2021;46:27643-74

[9]

Wang J,Lin M.Oxygen reduction reactions in the SOFC cathode of Ag/CeO2.Solid State Ion2006;177:939-47

[10]

Horita T,Sakai N.Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique.J Power Sources2002;106:224-30

[11]

Radhakrishnan R,Singhal SC.Estimation of charge-transfer resistivity of Pt Cathode on YSZ Electrolyte Using Patterned Electrodes.J Electrochem Soc2005;152:A927

[12]

Lee SY,Tai W.Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications.Adv Powder Technol2018;29:2423-8

[13]

Cai C,Xue K.Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells.Nano Res2022;15:3264-72

[14]

Xie M,Liu X.Improved durability of high-performance intermediate-temperature solid oxide fuel cells with a Ba-doped La0.6Sr0.4Co0.2Fe0.8O3-δ cathode.ACS Appl Mater Interfaces2022;14:33052-63

[15]

Guo D,Lu C,Niu B.High activity and stability of cobalt-free SmBa0.5Sr0.5Fe2O5+δ perovskite oxide as cathode material for solid oxide fuel cells.Ceram Int2023;49:34277-90

[16]

Carneiro JSA,Lucena MLRS.Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): oxygen reduction on nanostructured lanthanum nickelate oxides.Appl Catal B Environ2017;200:106-13

[17]

Zhang M,Sun Z.Unraveling the promotional role of BaCO3 in the electrode reaction kinetics of an SmBaFe2O5+δ air electrode of reversible solid oxide cells.J Mater Chem A2023;11:21645-54

[18]

Wang Y.A highly active and stable Sr2Fe1.5Mo0.5O6-δ-Ce0.8Sm0.2O1.95 ceramic fuel electrode for efficient hydrogen production via a steam electrolyzer without safe gas.Int J Coal Sci Technol2022;9:4

[19]

Zhang B,Hua Z,Xia C.Tungsten-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells.ACS Appl Energy Mater2021;4:8401-9

[20]

Yang M,Liu S.Bismuth doped Sr2Fe1.5Mo0.5O6-δ double perovskite as a robust fuel electrode in ceramic oxide cells for direct CO2 electrolysis.J Mater Sci Technol2023;164:160-7

[21]

Zhu Z,Xu D.Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fe1.5Mo0.5O6-δ electrodes via infiltration of Pr6O11 bifunctional catalyst.Electrochim Acta2022;402:139569

[22]

Zhang W,Guo L. Double perovskite material as an electrode for intermediate-temperature solid oxide fuel cells application. Prog Chem 2016;28:961-74. Available from: https://manu56.magtech.com.cn/progchem/EN/abstract/abstract11656.shtml [Last accessed on 6 Feb 2024]

[23]

Hussain S.Review of solid oxide fuel cell materials: cathode, anode, and electrolyte.Energy Transit2020;4:113-26

[24]

Afroze S,Cheok Q,Azad AK.Latest development of double perovskite electrode materials for solid oxide fuel cells: a review.Front Energy2019;13:770-97

[25]

Ishihara T. Perovskite oxide for solid oxide fuel cells. New York: Springer; 2009. pp. 1-16.

[26]

Anderson M,Taylor G.B-cation arrangements in double perovskites.Prog Solid State Chem1993;22:197-233

[27]

King G.Cation ordering in perovskites.J Mater Chem2010;20:5785-96

[28]

Zheng K,Bratek J.Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells.Solid State Ion2014;262:354-8

[29]

Rosas J,León-flores J.DFT study on the electronic and magnetic properties of the Sr2FeNbO6 compound.Mater Today Commun2020;23:100844

[30]

Skutina L,Medvedev D.Undoped Sr2MMoO6 double perovskite molybdates (M = Ni, Mg, Fe) as promising anode materials for solid oxide fuel cells.Materials2021;14:1715 PMCID:PMC8036809

[31]

Kumar P,Patro PK.Influence of lanthanum doping on structural and electrical/electrochemical properties of double perovskite Sr2CoMoO6 as anode materials for intermediate-temperature solid oxide fuel cells.ACS Appl Mater Interfaces2019;11:24659-67

[32]

Zhang P,Cheng J,Goodenough JB.Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels.J Power Sources2011;196:1738-43

[33]

Zheng K,Zhao H,Qi K.Magnesium-doped Sr2(Fe,Mo)O6-δ double perovskites with excellent redox stability as stable electrode materials for symmetrical solid oxide fuel cells.Membranes2022;12:1006 PMCID:PMC9611669

[34]

Qiu P,Li J.A review on the application of Sr2Fe1.5Mo0.5O6-based oxides in solid oxide electrochemical cells.Sep Purif Technol2022;298:121581

[35]

Liu Q,Dong X.Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells.Int J Hydrog Energy2010;35:10039-44

[36]

Zhang Y,Du Z,Li Y.High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell.Chem Mater2019;31:3784-93

[37]

Ding H.BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode.J Power Sources2010;195:7038-41

[38]

Zhao L,He B,Xia C.Synthesis, characterization and evaluation of PrBaCo2-xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells.Int J Hydrog Energy2011;36:3658-65

[39]

Li H.High-performance fluorine-doped cobalt-free oxide as a potential cathode material for solid oxide fuel cells.Int J Hydrog Energy2021;46:2503-10

[40]

Yu A,Sun L,Huo L.Effects of rare earth doping on electrochemical properties of NdBaCo2O6-δ cathode materials.J Alloy Compd2020;837:155563

[41]

Alvarado-flores JJ,Ávalos-rodríguez ML,Rutiaga-quiñones JG.Synthesis, characterization and kinetic study of the Sr2FeMoO6-δ double perovskite: new findings on the calcination of one of its precursors.Int J Hydrog Energy2021;46:26185-96

[42]

Zhang Z,Xu H.A highly operating stability, oxygen reduction reaction active and CO2/Cr tolerance perovskite cathode for solid oxide fuel cells.J Alloy Compd2022;922:166119

[43]

Yang Y,Xie Y.K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells.Electrochim Acta2021;389:138453

[44]

Akkurt S,Özmen Egesoy T.A review on new cobalt-free cathode materials for reversible solid oxide fuel cells.J Met Mater Miner2023;33:1654

[45]

Gao Y,Fu M,Tong H.A comprehensive review of recent progresses in cathode materials for proton-conducting SOFCs.Energy Rev2023;2:100038

[46]

Rath MK.Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-δ as an electrode material for symmetric solid oxide fuel cells.Electrochim Acta2016;212:678-85

[47]

Qiu P,Lei L.Evaluation of Cr-tolerance of Sr2Fe1.5Mo0.5O6-δ cathode for solid oxide fuel cells.ACS Appl Energy Mate2019;2:7619-27

[48]

Liu J,Li Y.Infiltrated Sr2Fe1.5Mo0.5O6-δ/La0.9Sr0.1Ga0.8Mg0.2O3 electrodes towards high performance symmetrical solid oxide fuel cells fabricated by an ultra-fast and time-saving procedure.Electrochem Commun2017;78:6-10

[49]

Han X,Wu M.A redox-reversible perovskite electrode for CeO2-and LaGaO3-based symmetric solid oxide fuel cells.Ceram Int2022;48:26440-51

[50]

Li Y,Ju J.Characteristics of nano-structured SFM infiltrated onto YSZ backbone for symmetrical and reversible solid oxide cells.Solid State Ion2018;319:98-104

[51]

Xiao G,Wang S.Synthesis and characterization of Mo-doped SrFeO3-δ as cathode materials for solid oxide fuel cells.J Power Sources2012;202:63-9

[52]

Patrakeev M,Kozhevnikov V.Ion-electron transport in strontium ferrites: relationships with structural features and stability.Solid State Sci2004;6:907-13

[53]

Schmidt M.Crystal and magnetic structures of Sr2Fe2O5 at elevated temperature.J Solid State Chem2001;156:292-304

[54]

Savinskaya O.Oxygen transport properties of nanostructured SrFe1-xMoxO2.5+3/2x (0 < x < 0.1) perovskites.J Solid State Electrochem2011;15:269-75

[55]

Liu G,Feng X.Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2FexMo2-xO6.J Alloy Compd2003;353:42-7

[56]

Zhang L,He Q.Double-perovskites A2FeMoO6-δ (A=Ca, Sr, Ba) as anodes for solid oxide fuel cells.J Power Sources2010;195:6356-66

[57]

Xiao G,Dong X,Chen F.Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells.J Power Sources2010;195:8071-4

[58]

Markov A,Patrakeev M.Structural stability and electrical transport in SrFe1-xMoxO3-δ.Solid State Ion2008;179:1050-3

[59]

Zhang SL,Li CX,Li CJ.Suspension plasma sprayed Sr2Fe1.4Mo0.6O6-δ electrodes for solid oxide fuel cells.J Therm Spray Tech2017;26:432-40

[60]

Li H,Wang Y.Sr2Fe2-xMoxO6-δ perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio.Catal Today2016;259:417-22

[61]

Rager J,Sharma A.Oxygen Stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO-Fe3O4-MoO3.J Am Ceram Soc2004;87:1330-5

[62]

Liu Q,Xiao G. Sr2Fe1.5Mo0.5O6-δ as both anode and cathode materials for symmetrical SOFCs. Proceedings of the 218th ECS Meeting; 2010 Oct 10-15; Las Vegas, USA. Pennington: Electrochemical Society; 2011.

[63]

Liu Q,Xiao G,Chen F.A novel electrode material for symmetrical SOFCs.Adv Mater2010;22:5478-82

[64]

Liu Q,Xiao G.Sr2Fe1.5Mo0.5O6-δ as a regenerative anode for solid oxide fuel cells.J Power Sources2011;196:9148-53

[65]

Zheng K,Polfus JM,Pishahang M.Carbon deposition and sulfur poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ electrode materials for symmetrical SOFCs.J Electrochem Soc2015;162:F1078-87

[66]

Li H,Wang Z,Li Y.An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode.RSC Adv2012;2:3857-63

[67]

Qiao J,Wang W.The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6-δ perovskite as cathode for intermediate-temperature solid oxide fuel cells.J Power Sources2016;331:400-7

[68]

Xu Z,Wan Y.Electrochemical performance and anode reaction process for Ca doped Sr2Fe1.5Mo0.5O6-δ as electrodes for symmetrical solid oxide fuel cells.Electrochim Acta2020;341:136067

[69]

Goldschmidt VM.Die gesetze der krystallochemie.Naturwissenschaften1926;14:477-85

[70]

Dai N,Jiang T.A new family of barium-doped Sr2Fe1.5Mo0.5O6-δ perovskites for application in intermediate temperature solid oxide fuel cells.J Power Sources2014;268:176-82

[71]

Forbess MJ,Wu Y,Cao GZ.Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1).Appl Phys Lett2000;76:2934-6

[72]

Qi H,Li W.Reduced thermal expansion and enhanced redox reversibility of La0.5Sr1.5Fe1.5Mo0.5O6-δ anode material for solid oxide fuel cells.ACS Appl Energy Mater2019;2:4244-54

[73]

Zhen S,Tang G,Sun K.Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes.Int J Hydrog Energy2016;41:9538-46

[74]

Yang G,Sun W.The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes.J Power Sources2014;268:771-7

[75]

Dai N,Wang Z.Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs.J Mater Chem A2013;1:14147-53

[76]

Osinkin D,Shubin K.Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1.95Fe1.4Ni0.1Mo0.5O6-δ promising electrode for solid state electrochemical devices.Electrochim Acta2021;369:137673

[77]

Meng X,Zhao Y.In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6-δ perovskite oxides with different Ni doping contents.Electrochim Acta2020;348:136351

[78]

Tian C,Yang J.A highly active cathode material of Cu-doped Sr2Fe1.5Mo0.5O6 for symmetrical solid oxide fuel cells.J Mater Sci Mater Electron2021;32:1258-64

[79]

Pan X,He B,Wu X.Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell.Int J Hydrog Energy2013;38:4108-15

[80]

Song Y,Wang D,Tan W.Interaction between electrode materials Sr2FeCo0.5Mo0.5O6-δ and hydrogen sulfide in symmetrical solid oxide fuel cells.Int J Hydrog Energy2017;42:22266-72

[81]

Stanley P,Huang Y,Wachsman ED.Defect chemistry and oxygen non-stoichiometry in SrFe0.2Co0.4Mo0.4O3-δ ceramic oxide for solid oxide fuel cells.Ionics2020;26:5641-9

[82]

He B,Wang Z,Zhao L.Novel, cobalt-free, and highly active Sr2Fe1.5Mo0.5-xSnxO6-δ cathode materials for intermediate temperature solid oxide fuel cells.Int J Hydrog Energy2017;42:10308-16

[83]

Jiang Y,Xia C.Sr2Fe1.4Mn0.1Mo0.5O6-δ perovskite cathode for highly efficient CO2 electrolysis.J Mater Chem A2019;7:22939-49

[84]

Sun W,Xu C.Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells.J Power Sources2017;343:237-45

[85]

Zhang L,Xu Y,Bi L.Tailoring Sr2Fe1.5Mo0.5O6-δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells.Sci China Mater2022;65:1485-94

[86]

Xu C,Yang X.Highly active and CO2-tolerant Sr2Fe1.3Ga0.2Mo0.5O6-δ cathode for intermediate-temperature solid oxide fuel cells.J Power Sources2020;450:227722

[87]

Hou M,Li P.Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-δ for intermediate temperature solid oxide fuel cells.J Power Sources2014;272:759-65

[88]

Gou M,Sun W.Nb-doped Sr2Fe1.5Mo0.5O6-δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells.Ceram Int2019;45:15696-704

[89]

Zhang Z,Zhong Y,Shao Z.Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells.Adv Energy Mater2017;7:1700242

[90]

Zhang L,Xu C.Attenuating a metal-oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction.J Mater Chem A2020;8:14091-8

[91]

Zhang Y,Gu Y,Zheng Y.Effect of Cl doping on the electrochemical performance of Sr2Fe1.5Mo0.5O6-δ cathode material for solid oxide fuel cells.Ceram Inter2020;46:22787-96

[92]

Zare A,Babaei A,Aslannejad H.Electrochemical evaluation of Sr2Fe1.5Mo0.5O6-δ/Ce0.9Gd0.1O1.95 cathode of SOFCs by EIS and DRT analysis.J Electroanal Chem2023;936:117376

[93]

Xu J,Wang Y.Enhancing performance of molybdenum doped strontium ferrite electrode by surface modification through Ni infiltration.Int J Hydrog Energy2021;46:10876-91

[94]

Dong X,Li J,Tian Y.Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-δ.J Power Sources2014;249:270-6

[95]

Li M,Su F.Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes.J Power Sources2014;260:197-204

[96]

Zhang L,Sun W.Constructing perovskite/alkaline-earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis.Sep Purif Technol2022;298:121475

[97]

Guo Y,Zhou S.Characterization of Sr2Fe1.5Mo0.5O6-δ-Gd0.1Ce0.9O1.95 symmetrical electrode for reversible solid oxide cells.Ceram Int2019;45:10969-75

[98]

Maide M,Salvan LK.Influence of electrolyte scaffold microstructure and loading of MIEC material on the electrochemical performance of RSOC fuel electrode.Fuel Cells2018;18:789-99

[99]

Skafte TL,Blennow P.Carbon and redox tolerant infiltrated oxide fuel-electrodes for solid oxide cells.ECS Trans2016;72:201-14

[100]

He B,Song S,Chen F.Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells.J Electrochem Soc2012;159:B619-26

[101]

Dai N,Wang Z.Synthesis and electrochemical characterization of Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells.J Power Sources2013;243:766-72

[102]

Hu B,Zhu Z,Bouwmeester HJM.Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation.J Mater Chem A2015;3:10296-302

[103]

Wang Y,Fang S,Wang H.A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process.J Power Sources2015;277:261-7

[104]

Wang Y,Fang S.Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes.J Power Sources2016;305:240-8

[105]

Osinkin D,Suntsov AY.The electrochemical behavior of the promising Sr2Fe1.5Mo0.5O6-δ+Ce0.8Sm0.2O1.9-δ anode for the intermediate temperature solid oxide fuel cells.J Alloy Compd2017;708:451-5

[106]

Wang Y,Lei L.Methane assisted solid oxide co-electrolysis process for syngas production.J Power Sources2017;344:119-27

[107]

Farzin YA,Skafte TL,Ataie A.Low-temperature preparation and investigation of electrochemical properties of SFM/CGO composite electrode.Solid State Ion2020;356:115435

[108]

Li C,Liu W,Zheng R.Tailoring the electrolyte and cathode properties for optimizing the performance of symmetrical solid oxide fuel cells fabricated by one-step co-sintering method.J Asian Ceram Soc2022;10:386-95

[109]

Osinkin D,Bogdanovich N.Influence of Pr6O11 on oxygen electroreduction kinetics and electrochemical performance of Sr2Fe1.5Mo0.5O6-δ based cathode.J Power Sources2018;392:41-7

[110]

Chen D,Shi H,Shao Z.Systematic evaluation of Co-free LnBaFe2O5+δ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells.Electrochim Acta2012;78:466-74

[111]

Wen C,Guo D.High performance and stability of PrBa0.5Sr0.5Fe2O5+δ symmetrical electrode for intermediate temperature solid oxide fuel cells.Solid State Ion2022;386:116048

[112]

Liu C,Ni Y.Ta-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells.Int J Hydrog Energy2023;48:9812-22

[113]

Mao X,Ma G.Performance of cobalt-free double-perovskite NdBaFe2-xMnxO5+δ cathode materials for proton-conducting IT-SOFC.J Alloy Compd2015;637:286-90

[114]

Mao X,Ma G.A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+δ cathode material for proton-conducting IT-SOFC.Ceram Int2015;41:10276-80

[115]

Zhang H,Wang P,Yu X.Novel cobalt-free perovskite PrBaFe1.9Mo0.1O5+δ as a cathode material for solid oxide fuel cells.Solid State Ion2023;391:116144

[116]

Zhang B,Han H,Xia C.Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells.ACS Appl Mater Interfaces2023;15:8253-62

[117]

Li G,Cheng X.Enhanced electrochemical performance of the Fe-based layered perovskite oxygen electrode for reversible solid oxide cells.ACS Appl Mater Interfaces2021;13:34282-91

[118]

S,Fu X.A-site deficient Fe-based double perovskite oxides PrxBaFe2O5+δ as cathodes for solid oxide fuel cells.J Alloy Compd2022;911:165002

[119]

Zhang K,Ran R,Liu S.Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs.Acta Mater2008;56:4876-89

[120]

Lu C,Yi W,Xu B.Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2,0.4) for solid oxide fuel cells and solid oxide electrolysis cells.Electrochim Acta2020;358:136916

[121]

Chavez E,Mogni L.Study of LnBaCo2O6-δ (Ln = Pr, Nd, Sm and Gd) double perovskites as new cathode material for IT-SOFC.J Phys Conf Ser2009;167:012043

[122]

Li H.A highly stable cobalt-free LaBa0.5Sr0.5Fe2O6-δ oxide as a high performance cathode material for solid oxide fuel cells.Int J Hydrog Energy2020;45:19831-9

[123]

He Z,Chen Y,Huang X.Layered perovskite Sm1-xLaxBaFe2O5+δ as cobalt-free cathodes for IT-SOFCs.RSC Adv2015;5:57592-8

[124]

Wang L,Bian L,Chou K.Performance of Ca-doped GdBa1-xCaxFe2O5+δ (x = 0, 0.1) as cathode materials for IT-SOFC application.Catal Today2018;318:132-6

[125]

Dong G,He F.Tin doped PrBaFe2O5+δ anode material for solid oxide fuel cells.RSC Adv2017;7:22649-61

[126]

Li H.Highly active and stable tin-doped perovskite-type oxides as cathode materials for solid oxide fuel cells.Electrochim Acta2020;361:137054

[127]

Chen T,Shen X,Wang W.Evaluation of Ba-deficient PrBa1-xFe2O5+δ oxides as cathode materials for intermediate-temperature solid oxide fuel cells.RSC Adv2016;6:13829-36

[128]

Guo RH,Zhang JY,An SL. Synthesis and characterization of double perovskite cathode material SmBaFe2-xCoxO5+δ for solid oxide fuel cells. New Chem Mater 2018;46:183-6. Avaliable from: https://webofscience.clarivate.cn/wos/alldb/full-record/CSCD:6207444 [Last accessed on 6 Feb 2024]

[129]

Ivanov AI,Tsipis EV,Kharton VV.Electrical conductivity, thermal expansion and electrochemical properties of perovskites PrBaFe2-xNixO5+δ.Russ J Electrochem2018;54:533-40

[130]

He W,Dong F.A novel layered perovskite electrode for symmetrical solid oxide fuel cells: PrBa(Fe0.8Sc0.2)2O5+δ.J Power Sources2017;363:16-9

[131]

Li H,Su C, Z.Novel cobalt-free layered perovskite LaBaFe2-xNbxO6-δ (x = 0-0.1) as cathode for solid oxide fuel cells.J Power Sources2020;453:227875

[132]

Ren R,Meng X.Boosting the electrochemical performance of Fe-based layered double perovskite cathodes by Zn2+ doping for solid oxide fuel cells.ACS Appl Mater Interfaces2020;12:23959-67

[133]

Li L,Shen Y.Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells.Electrochim Acta2015;182:682-92

[134]

Sengodan S,Kwon O.Self-decorated MnO nanoparticles on double perovskite solid oxide fuel cell anode by in situ exsolution.ACS Sustain Chem Eng2017;5:9207-13

[135]

Lai K.Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells.Chem Mater2018;30:2515-25

[136]

Jiang J,Yang X,He T.NdBaFe2-xCoxO5+δ double perovskites with exsolved Co-Fe alloy nanoparticles as highly efficient and stable anodes for direct hydrocarbon solid oxide fuel cells.ACS Appl Energy Mater2021;4:134-45

PDF

273

Accesses

0

Citation

Detail

Sections
Recommended

/