Ion transport, mechanical properties and relaxation dynamics in structural battery electrolytes consisting of an imidazolium protic ionic liquid confined into a methacrylate polymer

Achilleas Pipertzis , Nicole Abdou , Johanna Xu , Leif E. Asp , Anna Martinelli , Jan Swenson

Energy Materials ›› 2023, Vol. 3 ›› Issue (6) : 300050

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (6) :300050 DOI: 10.20517/energymater.2023.49
Article

Ion transport, mechanical properties and relaxation dynamics in structural battery electrolytes consisting of an imidazolium protic ionic liquid confined into a methacrylate polymer

Author information +
History +
PDF

Abstract

The effect of confining a liquid electrolyte into a polymer matrix was studied by means of Raman spectroscopy, differential scanning calorimetry, temperature-modulated differential scanning calorimetry, dielectric spectroscopy, and rheology. The polymer matrix was obtained from thermal curing ethoxylated bisphenol A dimethacrylate while the liquid electrolyte consisted of a protic ionic liquid based on the ethyl-imidazolium cation [C2HIm] and the bis(trifluoromethanesulfonyl)imide [TFSI] anion, doped with LiTFSI salt. We report that the confined liquid phase exhibits the following characteristics: (i) a distinctly reduced degree of crystallinity; (ii) a broader distribution of relaxation times; (iii) reduced dielectric strength; (iv) a reduced cooperativity length scale at the liquid-to-glass transition temperature (Tg); and (v) up-speeded local Tg-related ion dynamics. The latter is indicative of weak interfacial interactions between the two nanophases and a strong geometrical confinement effect, which dictates both the ion dynamics and the coupled structural relaxation, hence lowering Tg by about 4 K. We also find that at room temperature, the ionic conductivity of the structural electrolyte achieves a value of 0.13 mS/cm, one decade lower than the corresponding bulk electrolyte. Three mobile ions (Im+, TFSI-, and Li+) contribute to the measured ionic conductivity, implicitly reducing the Li+ transference number. In addition, we report that the investigated solid polymer electrolytes exhibit the shear modulus needed for transferring the mechanical load to the carbon fibers in a structural battery. Based on these findings, we conclude that optimized microphase-separated polymer electrolytes, including a protic ionic liquid, are promising for the development of novel multifunctional electrolytes for use in future structural batteries.

Keywords

Structural battery electrolyte / protic ionic liquid / ionic conductivity / relaxation dynamics / confinement

Cite this article

Download citation ▾
Achilleas Pipertzis, Nicole Abdou, Johanna Xu, Leif E. Asp, Anna Martinelli, Jan Swenson. Ion transport, mechanical properties and relaxation dynamics in structural battery electrolytes consisting of an imidazolium protic ionic liquid confined into a methacrylate polymer. Energy Materials, 2023, 3(6): 300050 DOI:10.20517/energymater.2023.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough JB.Electrochemical energy storage in a sustainable modern society.Energy Environ Sci2014;7:14-8

[2]

Tarascon JM.Issues and challenges facing rechargeable lithium batteries.Nature2001;414:359-67

[3]

Asp LE,Lindbergh G,Zenkert D.Structural battery composites: a review.Funct Compos Struct2019;1:042001

[4]

Asp LE,Carlstedt D.A structural battery and its multifunctional performance.Adv Energy Sustain Res2021;2:2000093

[5]

Lim GJH,Sutrisnoh NAA.Design of structural batteries: carbon fibers and alternative form factors.Mater Today Sustain2022;20:100252

[6]

Greenhalgh ES,Valkova M,Shaffer MSP.A critical review of structural supercapacitors and outlook on future research challenges.Compos Sci Technol2023;235:109968

[7]

Jin T,Liang K.Structural batteries: advances, challenges and perspectives.Mater Today2023;62:151-67

[8]

Danzi F,Oliveira JE,Camanho PP.Structural batteries: a review.Molecules2021;26:2203 PMCID:PMC8068925

[9]

Carlstedt D.Performance analysis framework for structural battery composites in electric vehicles.Compos B Eng2020;186:107822

[10]

Ishfaq A,Greenhalgh ES.Multifunctional design, feasibility and requirements for structural power composites in future electric air taxis.J Compos Mater2023;57:817-27

[11]

Kühnelt H,Mastropierro F.Structural batteries for aeronautic applications - state of the art, research gaps and technology development needs.Aerospace2022;9:7

[12]

Thomas JP,Pogue WR III.Multifunctional structure-battery composites for marine systems.J Compos Mater2013;47:5-26

[13]

Tan MY,Goh SS.Concepts and emerging trends for structural battery electrolytes.Chem Asian J2022;17:e202200784

[14]

Snyder JF,Wetzel ED.Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries.Chem Mater2007;19:3793-801

[15]

Ihrner N,Sieland F,Johansson M.Structural lithium ion battery electrolytes via reaction induced phase-separation.J Mater Chem A2017;5:25652-9

[16]

Schneider LM,Zenkert D.Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries.ACS Appl Energy Mater2019;2:4362-9

[17]

Cattaruzza M,Furó I,Liu F.Hybrid polymer-liquid lithium ion electrolytes: effect of porosity on the ionic and molecular mobility.J Mater Chem A2023;11:7006-15

[18]

Fu Y,Yu X.Fiber metal laminated structural batteries with multifunctional solid polymer electrolytes.Compos Sci Technol2022;230:109731

[19]

Choi J,Varley R,Fox BL.Multiple hydrogen bond channel structural electrolyte for an enhanced carbon fiber composite battery.ACS Appl Energy Mater2022;5:2054-66

[20]

Choi J,Varley RJ,Naebe M.High performance carbon fiber structural batteries using cellulose nanocrystal reinforced polymer electrolyte.ACS Appl Mater Interfaces2022;14:45320-32

[21]

Matsumoto K.Confinement of ionic liquid by networked polymers based on multifunctional epoxy resins.Macromolecules2008;41:6981-6

[22]

Shirshova N,Carreyette S.Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems.J Mater Chem A2013;1:15300-9

[23]

Shirshova N,Greenhalgh ES.Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes.J Phys Chem C2014;118:28377-87

[24]

Yu Y,Feng M.Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites.Compos Sci Technol2017;147:62-70

[25]

Kwon SJ,Jung BM,Choi UH.Multifunctional epoxy-based solid polymer electrolytes for solid-state supercapacitors.ACS Appl Mater Interfaces2018;10:35108-17

[26]

Schulze MW,Hillmyer MA.High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation.Nano Lett2014;14:122-6

[27]

Armand M,MacFarlane DR,Scrosati B.Ionic-liquid materials for the electrochemical challenges of the future.Nat Mater2009;8:621-9

[28]

Abdurrokhman I,Danyliv O,Swenson J.Protic ionic liquids based on the alkyl-imidazolium cation: effect of the alkyl chain length on structure and dynamics.J Phys Chem B2019;123:4044-54

[29]

Martinelli A,Jacobsson P,Fernicola A.Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and bis(trifluoromethanesulfonyl)imide anion.J Phys Chem B2009;113:11247-51

[30]

Pitawala J,Jacobsson P,Croce F.Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids.Faraday Discuss2012;154:71-80; discussion 81-96, 465-71.

[31]

Martinelli A,Johansson P.Conformational evolution of TFSI- in protic and aprotic ionic liquids.J Raman Spectrosc2011;42:522-8

[32]

Nasrabadi AT.Structure and transport properties of lithium-doped aprotic and protic ionic liquid electrolytes: insights from molecular dynamics simulations.J Phys Chem B2019;123:5588-600

[33]

Jafta CJ,Haupt L.Ion dynamics in ionic-liquid-based li-ion electrolytes investigated by neutron scattering and dielectric spectroscopy.ChemSusChem2018;11:3512-23

[34]

Singh MP,Chandra S.Ionic liquids confined in porous matrices: physicochemical properties and applications.Prog Mater Sci2014;64:73-120

[35]

Abdou N,Brun N.Ionic guest in ionic host: ionosilica ionogel composites via ionic liquid confinement in ionosilica supports.Mater Chem Front2022;6:939-47

[36]

Abdou N,Brun N.Confinement effects on the ionic liquid dynamics in ionosilica ionogels: impact of the ionosilica nature and the host/guest ratio.J Phys Chem C2022;126:20937-45

[37]

Martinelli A.An investigation of the sol-gel process in ionic liquid-silica gels by time resolved Raman and 1H NMR spectroscopy.Phys Chem Chem Phys2012;14:13216-23

[38]

Martinelli A.Conformational changes and phase behaviour in the protic ionic liquid 1-ethylimidazolium bis(trifluoromethylsulfonyl)imide in the bulk and nano-confined state.Eur J Inorg Chem2015;2015:1300-8

[39]

Nayeri M,Bernin D,Martinelli A.Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels.Soft Matter2014;10:5618-27

[40]

Vavra S,Evenäs L.Transport properties and local structure of an imidazole/protic ionic liquid mixture confined in the mesopores of hydrophobic silica.J Phys Chem C2021;125:2607-18

[41]

Morais EM,Martinelli A.Solvent-free synthesis of protic ionic liquids. Synthesis, characterization and computational studies of triazolium based ionic liquids.J Mol Liq2022;360:119358

[42]

Menne S,Anouti M.Protic ionic liquids as electrolytes for lithium-ion batteries.Electrochem Commun2013;31:39-41

[43]

Cerveny S,Swenson J,Xu L.Confined water as model of supercooled water.Chem Rev2016;116:7608-25

[44]

Swenson J.Dynamics of deeply supercooled interfacial water.J Phys Condens Matter2015;27:033102

[45]

Swenson J,Jansson H.Why is there no clear glass transition of confined water?.Chem Phys2013;424:20-5

[46]

Cerveny S,Swenson J.Relaxations of hydrogen-bonded liquids confined in two-dimensional vermiculite clay.J Phys Chem B2004;108:11596-603

[47]

Swenson J,Bergman R.Relaxation processes in supercooled confined water and implications for protein dynamics.Phys Rev Lett2006;96:247802

[48]

Ananiadou A,Steinhart M.Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols.J Chem Phys2021;155:184504

[49]

Tu CH,Butt HJ.Ionic conductivity of a solid polymer electrolyte confined in nanopores.Macromolecules2022;55:1332-41

[50]

Iacob C,Kipnusu WK,Kärger J.Enhanced charge transport in nano-confined ionic liquids.Soft Matter2012;8:289-93

[51]

Tu W,Szklarz G.Dynamics of pyrrolidinium-based ionic liquids under confinement. II. the effects of pore size, inner surface, and cationic alkyl chain length.J Phys Chem C2020;124:5395-408

[52]

Berrod Q,Judeinstein P.Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes.Nanoscale2016;8:7845-8

[53]

Alexandris S,Sakellariou G,Butt HJ.Interfacial energy and glass temperature of polymers confined to nanoporous alumina.Macromolecules2016;49:7400-14

[54]

Alcoutlabi M.Effects of confinement on material behaviour at the nanometre size scale.J Phys Condens Matter2005;17:461

[55]

Busselez R,Ji Q,Morineau D.Molecular dynamics simulation of nanoconfined glycerol.Phys Chem Chem Phys2009;11:11127-33

[56]

Brunauer S,Teller E.Adsorption of gases in multimolecular layers.J Am Chem Soc1938;60:309-19

[57]

Barrett EP,Halenda PP.The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms.J Am Chem Soc1951;73:373-80

[58]

Wunderlich B,Boller A.Mathematical description of differential scanning calorimetry based on periodic temperature modulation.Thermochim Acta1994;238:277-93

[59]

Simon SL.Temperature-modulated differential scanning calorimetry: theory and application.Thermochim Acta2001;374:55-71

[60]

Shin WS,Schwartz B,Baran GR.Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy.Dent Mater1993;9:317-24

[61]

Gejji SP,Babu K.Ab initio structure and vibrational frequencies of (CF3SO2)2N- Li+ ion pairs.J Phys Chem A1999;103:7474-80

[62]

Guyomard-Lack A,Dupré N,Humbert B.Destructuring ionic liquids in ionogels: enhanced fragility for solid devices.Phys Chem Chem Phys2014;16:23639-45

[63]

Aidoud D,Guyomard D,Lestriez B.Photo-polymerized organic host network of ionogels for lithium batteries: effects of mesh size and of ethylene oxide content.J Electrochem Soc2018;165:A3179

[64]

Dreier P,Spyridakou M,Floudas G.Introduction of trifluoromethanesulfonamide groups in poly(ethylene oxide): ionic conductivity of single-ion-conducting block copolymer electrolytes.Macromolecules2022;55:1342-53

[65]

Pipertzis A,Giaouzi D,Floudas GA.Grafted copolymer electrolytes based on the poly(acrylic acid-co-oligo ethylene glycol acrylate) (P(AA-co-OEGA)) ion-conducting and mechanically robust block.ACS Appl Polym Mater2022;4:7070-80

[66]

Pipertzis A,Mühlinghaus M,Scherf U.What determines the glass temperature and dc-conductivity in imidazolium-polymerized ionic liquids with a polythiophene backbone?.Macromolecules2020;53:3535-50

[67]

Paluch M.Dielectric properties of ionic liquids. Switzerland: Springer; 2016.

[68]

Wojnarowska Z.Recent progress on dielectric properties of protic ionic liquids.J Phys Condens Matter2015;27:073202

[69]

Griffin P,Kisliuk A.Decoupling charge transport from the structural dynamics in room temperature ionic liquids.J Chem Phys2011;135:114509

[70]

Musiał M,Wojnarowska Z.Magnitude of dynamically correlated molecules as an indicator for a dynamical crossover in ionic liquids.J Phys Chem B2021;125:4141-7 PMCID:PMC8154596

[71]

Bergman R.General susceptibility functions for relaxations in disordered systems.J Appl Phys2000;88:1356-65

[72]

Kremer F.Broadband dielectric spectroscopy. Berlin: Springer; 2002.

[73]

Floudas G.2.32 - Dielectric spectroscopy. In: Matyjaszewski K, Möller M, editors. Polymer science: a comprehensive reference. Amsterdam: Elsevier; 2012. pp. 825-45.

[74]

Ngai KL,Plazek DJ.Amorphous polymers. In: Mark HF, editor. Encyclopedia of Polymer science and technology. New York: John Wiley & Sons; 2002.

[75]

Adam G.On the temperature dependence of cooperative relaxation properties in glass-forming liquids.J Chem Phys1965;43:139-46

[76]

Donth E.The size of cooperatively rearranging regions at the glass transition.J Non Cryst Solids1982;53:325-30

PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

/