Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives

Matteo Palluzzi , Akiko Tsurumaki , Henry Adenusi , Maria Assunta Navarra , Stefano Passerini

Energy Materials ›› 2023, Vol. 3 ›› Issue (6) : 300049

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (6) :300049 DOI: 10.20517/energymater.2023.48
Review

Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives

Author information +
History +
PDF

Abstract

Lithium-ion batteries (LIBs) are the predominant power source for portable electronic devices, and in recent years, their use has extended to higher-energy and larger devices. However, to satisfy the stringent requirements of safety and energy density, further material advancements are required. Due to the inherent flammability and incompatibility of organic solvent-based liquid electrolytes with materials utilized in high energy devices, it is necessary to transition to alternative conductive mediums. The focus is shifting from molecular materials to a class of materials based on ions, including ionic liquids (ILs) and their derivatives such as zwitterionic ILs, polymerized ILs, and solvated ILs, which possess high levels of safety, stability, compatibility, and the ability to rationally design ILs for specific applications. Ion design is crucial to achieve superior control of electrode/electrolyte interphases (EEIs) both on anode and cathode surfaces to realize safer and higher-energy lithium-metal batteries (LMBs). This review summarizes the different uses of ILs in electrolytes (both liquid and solids) for LMBs, reporting the most promising results obtained during the last years and highlighting their role in the formation of suitable EEIs. Furthermore, a discussion on the use of deep-eutectic solvents is also provided, which is a class of material with similar properties to ILs and an important alternative from the viewpoint of sustainability. Lastly, future prospects for the optimization of IL-based electrolytes are summarized, ranging from the functional design of ionic structures to the realization of nanophases with specific features.

Keywords

Ionic liquids / deep eutectic solvents / lithium batteries / safety / electrode/electrolyte interphases

Cite this article

Download citation ▾
Matteo Palluzzi, Akiko Tsurumaki, Henry Adenusi, Maria Assunta Navarra, Stefano Passerini. Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives. Energy Materials, 2023, 3(6): 300049 DOI:10.20517/energymater.2023.48

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reddy MV,Julien CM,Zaghib K.Brief history of early lithium-battery development.Materials2020;13:1884 PMCID:PMC7215417

[2]

Miao Y,von Jouanne A.Current Li-ion battery technologies in electric vehicles and opportunities for advancements.Energies2019;12:1074

[3]

Lai X,Tang X.Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective.eTransportation2022;12:100169

[4]

Kebede AA,Messagie M.Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application.J Energy Stor2021;40:102748

[5]

Kebede AA,Van Mierlo J.A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration.Renew Sustain Energy Rev2022;159:112213

[6]

Sadd M,Bowen JR,Matic A.Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy.Nat Commun2023;14:854 PMCID:PMC9931753

[7]

Liu X,Mariani A.Enhanced Li+ transport in ionic liquid-based electrolytes aided by fluorinated ethers for highly efficient lithium metal batteries with improved rate capability.Small Methods2021;5:e2100168

[8]

Sun H,Zhu Y.High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte.Adv Mater2020;32:e2001741

[9]

Wang Z,Xu J.Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries.Adv Funct Mater2022;32:2112598

[10]

Ren W,Cui Z,Li B.Recent progress of functional separators in dendrite inhibition for lithium metal batteries.Energy Stor Mater2021;35:157-68

[11]

Liu J,Cui Y.Pathways for practical high-energy long-cycling lithium metal batteries.Nat Energy2019;4:180-6

[12]

Hua W,Knapp M.Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides.Nat Commun2019;10:5365 PMCID:PMC6879514

[13]

Wu F,Diemant T.Reducing capacity and voltage decay of Co-free Li1.2Ni0.2Mn0.6O2 as positive electrode material for lithium batteries employing an ionic liquid-based electrolyte.Adv Energy Mater2020;10:2001830

[14]

Liang G,See KW,Pang WK.Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects.J Mater Chem A2020;8:15373-98

[15]

Yu X,Manthiram A.Advances and prospects of high-voltage spinel cathodes for lithium-based batteries.Small Methods2021;5:e2001196

[16]

Li T,Zhang L,Shi K.Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries.Electrochem Energy Rev2020;3:43-80

[17]

Jung R,Thomas R.Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells.J Electrochem Soc2019;166:A378

[18]

Zhang SS.Problems and their origins of Ni-rich layered oxide cathode materials.Energy Stor Mater2020;24:247-54

[19]

Hu S,Liang G.Li-rich layered oxides and their practical challenges: recent progress and perspectives.Electrochem Energy Rev2019;2:277-311

[20]

Adenusi H,Passerini S,Chen G.Lithium batteries and the solid electrolyte interphase (SEI) - progress and outlook.Adv Energy Mater2023;13:2203307

[21]

Wu H,Wang C,Xu W.Recent progress in understanding solid electrolyte interphase on lithium metal anodes.Adv Energy Mater2021;11:2003092

[22]

Deng K,Wang D.Nonflammable organic electrolytes for high-safety lithium-ion batteries.Energy Stor Mater2020;32:425-47

[23]

Chandra Rath P,Patra J.Hybrid electrolyte enables safe and practical 5V LiNi0.5Mn1.5O4 batteries.J Mater Chem A2019;7:16516-25

[24]

Zhai P,Gu X,Gong Y.Interface engineering for lithium metal anodes in liquid electrolyte.Adv Energy Mater2020;10:2001257

[25]

Yoon I,Abraham DP,Guduru PR.Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries.Energy Stor Mater2020;25:296-304

[26]

Płotka-wasylka J,Andruch V.Deep eutectic solvents vs ionic liquids: similarities and differences.Microchem J2020;159:105539

[27]

Welton T.Ionic liquids: a brief history.Biophys Rev2018;10:691-706 PMCID:PMC5988633

[28]

Singh SK.Ionic liquids synthesis and applications: an overview.J Mol Liq2020;297:112038

[29]

Jeong S,Appetecchi GB.Asymmetric ammonium-based ionic liquids as electrolyte components for safer, high-energy, electrochemical storage devices.Energy Stor Mater2019;18:1-9

[30]

Simonetti E,Bellusci M.A more sustainable and cheaper one-pot route for the synthesis of hydrophobic ionic liquids for electrolyte applications.ChemSusChem2019;12:4946-52 PMCID:PMC6972632

[31]

Brutti S,De Francesco M.Ionic liquid electrolytes for high-voltage, lithium-ion batteries.J Power Sources2020;479:228791

[32]

Philippi F.Targeted modifications in ionic liquids - from understanding to design.Phys Chem Chem Phys2021;23:6993-7021

[33]

Palumbo O,Brubach JB.So similar, yet so different: the case of the ionic liquids N-trimethyl-N (2-methoxyethyl)ammonium Bis (trifluoromethanesulfonyl)imide and N,N-Diethyl-N-methyl-N(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide.Front Phys2022;10:851279

[34]

Tong J,von Solms N.The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes.Front Chem2019;7:945 PMCID:PMC7010713

[35]

Hansen BB,Chen B.Deep eutectic solvents: a review of fundamentals and applications.Chem Rev2021;121:1232-85

[36]

Mourad E,Lannelongue P.Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.Nat Mater2017;16:446-53

[37]

Qi S,He J.Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering.J Energy Chem2021;63:270-7

[38]

Tsurumaki A,Rigano A,Panero S.Bis(oxalato)borate and difluoro(oxalato)borate-based ionic liquids as electrolyte additives to improve the capacity retention in high voltage lithium batteries.Electrochim Acta2019;315:17-23

[39]

Yoshizawa M,Ito-akita K.Ion conduction in zwitterionic-type molten salts and their polymers.J Mater Chem2001;11:1057-62

[40]

Ohno H,Ogihara W.A new type of polymer gel electrolyte: zwitterionic liquid/polar polymer mixture.Electrochim Acta2003;48:2079-83

[41]

Yoshizawa-Fujita M.Applications of zwitterions and zwitterionic polymers for Li-ion batteries.Chem Rec2023;23:e202200287

[42]

Ohno H.Design of ion conductive polymers based on ionic liquids.Macromol Symp2007;249-50:551-6

[43]

Nishimura N.15th anniversary of polymerised ionic liquids.Polymer2014;55:3289-97

[44]

Matsumi N,Miyake M.Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes.Macromolecules2006;39:6924-7

[45]

Eshetu GG,Forsyth M,Armand M.Polymeric ionic liquids for lithium-based rechargeable batteries.Mol Syst Des Eng2019;4:294-309

[46]

Fu C,Grissa R.A Polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries.Adv Energy Mater2022;12:2200412

[47]

Watanabe M,Ueno K.From ionic liquids to solvate ionic liquids: challenges and opportunities for next generation battery electrolytes.Bull Chem Soc Jpn2018;91:1660-82

[48]

Mandai T,Watanabe M.Solvate ionic liquids for Li, Na, K, and Mg batteries.Chem Rec2019;19:708-22

[49]

Cappelluti F,Bonomo M.Stepping away from serendipity in deep eutectic solvent formation: prediction from precursors ratio.J Mol Liq2022;367:120443

[50]

Ogawa H.Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: electrochemical, thermal and computational study.Phys Chem Chem Phys2020;22:8853-63

[51]

Ueno K,Yamazaki A.Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium-sulfur batteries.J Phys Chem C2013;117:20509-16

[52]

Dokko K,Yamauchi K.Solvate ionic liquid electrolyte for Li-S batteries.J Electrochem Soc2013;160:A1304

[53]

Inman G,Prodius D.Application of ionic liquids for the recycling and recovery of technologically critical and valuable metals.Energies2022;15:628

[54]

Zante G,Masmoudi A,Trébouet D.Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents.Miner Eng2020;156:106512

[55]

Zheng H,Dong T.A novel strategy of lithium recycling from spent lithium-ion batteries using imidazolium ionic liquid.Chin J Chem Eng2022;41:246-51

[56]

Botelho Junior AB, Stopic S, Friedrich B, Tenório JAS, Espinosa DCR. Cobalt recovery from Li-ion battery recycling: a critical review.Metals2021;11:1999

[57]

Pringle JM,Baranyai K.The effect of anion fluorination in ionic liquids - physical properties of a range of bis(methanesulfonyl)amide salts.New J Chem2003;27:1504-10

[58]

Park J,Kusumah P,Kwon K.Application of ionic liquids in hydrometallurgy.Int J Mol Sci2014;15:15320-43 PMCID:PMC4200866

[59]

Bonhôte P,Papageorgiou N,Grätzel M.Hydrophobic, highly conductive ambient-temperature molten salts.Inorg Chem1996;35:1168-78

[60]

Liu K,Shi L,Yuan S.Ionic liquids for high performance lithium metal batteries.J Energy Chem2021;59:320-33

[61]

Wu F,Kim GT.A novel phosphonium ionic liquid electrolyte enabling high-voltage and high-energy positive electrode materials in lithium-metal batteries.Energy Stor Mater2021;42:826-35

[62]

Rangasamy VS,Locquet JP.Ionic liquid electrolytes based on sulfonium cation for lithium rechargeable batteries.Electrochim Acta2019;328:135133

[63]

Pandian S,Hariharan KS,Park DH.Functionalized ionic liquids as electrolytes for lithium-ion batteries.J Power Sources2015;286:204-9

[64]

Blundell RK.Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions.Phys Chem Chem Phys2014;16:15278-88

[65]

Tsurumaki A,Abe M,Ohno H.Effect of the cation structure on cellulose dissolution in aqueous solutions of organic onium hydroxides.Phys Chem Chem Phys2020;22:22602-8

[66]

Montanino M,Alessandrini F,Appetecchi GB.The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids.Electrochim Acta2011;57:153-9

[67]

Zhang S,Jiang N.Rational design of an ionic liquid-based electrolyte with high ionic conductivity towards safe lithium/lithium-ion batteries.Chem Asian J2019;14:2810-4

[68]

Jin Y,Chai M,Hirano S.Ether-functionalized trialkylimidazolium ionic liquids: synthesis, characterization, and properties.Ind Eng Chem Res2012;51:11011-20

[69]

Tsurumaki A,Poiana R.Enhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids.Electrochim Acta2019;316:1-7

[70]

Wilkes JS.Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids.J Chem Soc Chem Commun1992;13:965-67

[71]

Fuller J,De Long HC.Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts.J Chem Soc Chem Commun1994;3:299-300

[72]

Sayah S,Tran-van F,Lemordant D.A bis(fluorosulfonyl)imide based ionic liquid as safe and efficient electrolyte for Si/Sn-Ni/C/Al composite anode.Electrochim Acta2017;243:197-206

[73]

Gao X,Mariani A.Concentrated ionic-liquid-based electrolytes for high-voltage lithium batteries with improved performance at room temperature.ChemSusChem2019;12:4185-93 PMCID:PMC6852532

[74]

Kerner M,Scheers J.Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?.Phys Chem Chem Phys2015;17:19569-81

[75]

Jang J,Ko S.Self-assembled protective layer by symmetric ionic liquid for long-cycling lithium-metal batteries.Adv Energy Mater2022;12:2103955

[76]

Wu F,Kuenzel M.Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries.Joule2021;5:2177-94

[77]

Lee S,Koo B.Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes.Adv Funct Mater2020;30:2003132

[78]

Elia GA,Jeong S,Hassoun J.Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes.Energy Environ Sci2016;9:3210-20

[79]

Heist A.Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI.J Electrochem Soc2019;166:A1860-6

[80]

Liu X,Adenusi H.Locally concentrated ionic liquid electrolytes for lithium-metal batteries.Angew Chem Int Ed2023;62:e202219318

[81]

Liu X,Zarrabeitia M.Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries.Energy Stor Mater2022;44:370-8

[82]

Liu X,Diemant T.Difluorobenzene-based locally concentrated ionic liquid electrolyte enabling stable cycling of lithium metal batteries with nickel-rich cathode.Adv Energy Mater2022;12:2200862

[83]

Zhang S,Fang Y.Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes.Chin Chem Lett2022;33:3951-4

[84]

Wang Z,Sun Y.Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries.Adv Energy Mater2021;11:2003752

[85]

Wang TH,Li NW.Cations and anions regulation through hybrid ionic liquid electrolytes towards stable lithium metal anode.Chem Eng J2022;439:135780

[86]

Heist A,Lee SH.High-energy nickel-rich layered cathode stabilized by ionic liquid electrolyte.J Electrochem Soc2019;166:A873-9

[87]

Nagarajan S,Hwang S,Arava LMR.Depth-dependent understanding of cathode electrolyte interphase (CEI) on the layered Li-ion cathodes operated at extreme high temperature.Chem Mater2022;34:4587-601

[88]

Nair JR,Kazzazi A.Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries.J Power Sources2019;412:398-407

[89]

Lingua G,Stettner T,Balducci A.Enabling safe and stable Li metal batteries with protic ionic liquid electrolytes and high voltage cathodes.J Power Sources2021;481:228979

[90]

Menne S,Anouti M.Protic ionic liquids as electrolytes for lithium-ion batteries.Electrochem Commun2013;31:39-41

[91]

Vogl T,Kühnel RS.The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications.J Mater Chem A2014;2:8258-65

[92]

Wu W,Wang J.Enabling high-energy flexible solid-state lithium ion batteries at room temperature.Chem Eng J2021;424:130335

[93]

Zhang D,Huang X.A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries.J Mater Chem A2020;8:18043-54

[94]

Ye T,Zhang Y.Recent Progress in solid electrolytes for energy storage devices.Adv Funct Mater2020;30:2000077

[95]

Hou M,Chen K,Xue D.Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries.Nanotechnology2020;31:132003

[96]

Li S,Shen L.Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries.Adv Sci2020;7:1903088 PMCID:PMC7055568

[97]

Xi G,Wang S,Li Y.Polymer-based solid electrolytes: material selection, design, and application.Adv Funct Mater2021;31:2007598

[98]

Dirican M,Zhu P.Composite solid electrolytes for all-solid-state lithium batteries.Mater Sci Eng R Rep2019;136:27-46

[99]

Ohno H.Room-temperature molten salt polymers as a matrix for fast ion conduction.Chem Lett1998;27:751-2

[100]

Pont AL,De Meatza I,Mecerreyes D.Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes.J Power Sources2009;188:558-63.

[101]

Döbbelin M,Bedu M.Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side chains.Chem Mater2012;24:1583-90

[102]

Yu L,Peng Y,Hu X.Electrospun poly(ionic liquid) nanofiber separators with high lithium-ion transference number for safe ionic-liquid-based lithium batteries in wide temperature range.Mater Today Phys2022;25:100716

[103]

Martinez-ibañez M,Meabe L.Revealing the anion chemistry effect on transport properties of ternary Gel polymer electrolytes.Chem Mater2022;34:7493-502

[104]

Tian X,Yi Y.Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries.J Power Sources2020;450:227629

[105]

Yin K,Li X,Tachibana K.Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries.J Mater Chem A2015;3:170-8

[106]

Zhu J,Zhao S,Belharouak I.Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges.Adv Energy Mater2021;11:2003836

[107]

Hu Z,Guo Y.Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries.J Memb Sci2020;599:117827

[108]

Xing C,Zhao L,Cao X.Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties.Polym Chem2013;4:5726-34

[109]

Tsurumaki A,Ohno H.Properties of polymer electrolytes composed of poly(ethylene oxide) and ionic liquids according to hard and soft acids and bases theory.Polym Adv Technol2011;22:1223-8

[110]

Zhu X,Deng Q.Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries.ACS Sustaina Chem Eng2022;10:4173-85

[111]

Fu D,Zhang F.Enabling polymeric ionic liquid electrolytes with high ambient ionic conductivity by polymer chain regulation.Chem Eng J2022;431:133278

[112]

Liang L,Chen X.Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries.Chem Eng J2021;421:130000

[113]

Wang D,Ren Y.Bifunctional solid-state copolymer electrolyte with stabilized interphase for high-performance lithium metal battery in a wide temperature range.ChemSusChem2022;15:e202200993

[114]

Chen X,Hu W,Zhang Y.POSS hybrid poly(ionic liquid) ionogel solid electrolyte for flexible lithium batteries.J Power Sources2022;542:231766

[115]

Zhang F,Wang Z.Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries.ACS Appl Mater Interfaces2020;12:23774-80

[116]

Sha Y,Dong T,Tao H.In Situ network electrolyte based on a functional polymerized ionic liquid with high conductivity toward lithium metal batteries.ACS Appl Energy Mater2021;4:14755-65

[117]

Dong L,Fu J.Cross-linked ionic copolymer solid electrolytes with loose Coordination-assisted lithium transport for lithium batteries.Chem Eng J2021;423:130209

[118]

Shi Y,Niu J,Wang F.A highly durable rubber-derived lithium-conducting elastomer for lithium metal batteries.Adv Sci2022;9:e2200553 PMCID:PMC9165490

[119]

Tseng YC,Lee TY,Jan JS.In situ polymerized electrolytes with fully cross-linked networks boosting high ionic conductivity and capacity retention for lithium ion batteries.ACS Appl Energy Mater2021;4:14309-22

[120]

Tseng YC,Hsiang SH,Teng H.Lithium battery enhanced by the combination of in-situ generated poly(ionic liquid) systems and TiO2 nanoparticles.J Membr Sci2022;641:119891

[121]

Liang L,Yuan W,Liao H.Highly conductive, flexible, and nonflammable double-network poly(ionic liquid)-based ionogel electrolyte for flexible lithium-ion batteries.ACS Appl Mater Interfaces2021;13:25410-20

[122]

Yin K,Yang L.An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries.J Power Sources2014;258:150-4

[123]

Kuroda K.Ionic liquids enable accurate chromatographic analysis of polyelectrolytes.Chem Commun2015;51:10551-3

[124]

Tan J,Dai A.Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries.Energy Stor Mater2020;33:173-80

[125]

Ding L,Song S.Structural characteristics and rheological properties of hydroxypropyl trimethyl ammonium chloride chitosan.Int J Biol Macromol2022;216:312-21

[126]

Atik J,Thienenkamp JH,Winter M.Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes.Angew Chem Int Ed2021;60:11919-27 PMCID:PMC8252488

[127]

Shin JH,Passerini S.Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes.Electrochem Commun2003;5:1016-20

[128]

Shin JH,Passerini S.PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries.J Electrochem Soc2005;152:A978

[129]

Poiana R,Tsurumaki A,Nicotera I.Safe gel polymer electrolytes for high voltage Li-batteries.Electrochim Acta2022;401:139470

[130]

Barai P,Srinivasan V.Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies.Phys Chem Chem Phys2017;19:20493-505

[131]

Zhang W,Zhang Q.Li7La3Zr2O12 ceramic nanofiber-incorporated solid polymer electrolytes for flexible lithium batteries.ACS Appl Energy Mater2020;3:5238-46

[132]

Tseng YC,Tsao CH,Hou SS.Polymer electrolytes based on Poly(VdF-co-HFP)/ionic liquid/carbonate membranes for high-performance lithium-ion batteries.Polymer2019;173:110-8

[133]

Rao M,Liao Y,Li W.Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery.J Membr Sci2012;399-400:37-42

[134]

Zhai W,Wang L,Yang H.Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries.Electrochim Acta2014;133:623-30

[135]

Yang Y,Wang D.Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries.J Membr Sci2020;612:118424

[136]

Wang B,He P.Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries.J Membr Sci2022;642:119952

[137]

Li Z.Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries.Sci China Chem2021;64:673-80

[138]

Lin X,Li Z.A high-performance, solution-processable polymer/ceramic/ionic liquid electrolyte for room temperature solid-state Li metal batteries.Nano Energy2021;89:106351

[139]

Liu M,van Eck ERH,Ganapathy S.Improving Li-ion interfacial transport in hybrid solid electrolytes.Nat Nanotechnol2022;17:959-67

[140]

Arai N,Yamaguchi T.Dynamic chelate effect on the Li+-ion conduction in solvate ionic liquids.J Phys Chem C2019;123:30228-33

[141]

Arai N,Nozaki E.Speciation analysis and thermodynamic criteria of solvated ionic liquids: ionic liquids or superconcentrated solutions?.J Phys Chem Lett2020;11:4517-23

[142]

Shigenobu K,Dokko K,Fujii K.Anion effects on Li ion transference number and dynamic ion correlations in glyme-Li salt equimolar mixtures.Phys Chem Chem Phys2021;23:2622-9

[143]

Takahashi K,Murata W.Physicochemical compatibility of highly-concentrated solvate ionic liquids and a low-viscosity solvent.RSC Adv2019;9:24922-7 PMCID:PMC9069941

[144]

Eyckens DJ.A review of solvate ionic liquids: physical parameters and synthetic applications.Front Chem2019;7:263 PMCID:PMC6482472

[145]

Ueno K,Tsuzuki S.Li+ solvation in glyme-Li salt solvate ionic liquids.Phys Chem Chem Phys2015;17:8248-57

[146]

Yoshida K,Kazue Y.Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes.J Am Chem Soc2011;133:13121-9

[147]

Ueno K,Tsuchiya M,Dokko K.Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?.J Phys Chem B2012;116:11323-31

[148]

Phiri I,Kim S.Effects of novel benzotriazole based zwitterionic salt as electrolyte additive for lithium ion batteries.Curr Appl Phys2020;20:122-31

[149]

Guan Z,Du B.A non-flammable zwitterionic ionic liquid/ethylene carbonate mixed electrolyte for lithium-ion battery with enhanced safety.Materials2021;14:4225 PMCID:PMC8348709

[150]

Nguyen DQ, Loi Nguyen T, Loan Phung Le M, Phong Mai T, Sik Kim H. A zwitterionic salt with one sulfonate and two ether functional groups as an additive for lithium-ion battery electrolyte.Electrochem Commun2022;137:107269

[151]

Byrne N,Macfarlane DR.The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries.Adv Mater2005;17:2497-501

[152]

Yoshizawa M,Ohno H.Design of ionic liquids for electrochemical applications.Aust J Chem2004;57:139-44

[153]

Phiri I,Kim S.Zwitterionic osmolyte-inspired additives as scavengers and low temperature performance enhancers for lithium ion batteries.Mater Lett2021;288:129366

[154]

Byrne N,Macfarlane DR.Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes.J Power Sources2008;184:288-96

[155]

Gómez E,Magagnin L.Electrodeposition of Co, Sm and SmCo from a deep eutectic solvent.J Electroanal Chem2011;658:18-24

[156]

Malaquias JC,Thomassey M.Electrodeposition of Cu-In alloys from a choline chloride based deep eutectic solvent for photovoltaic applications.Electrochim Acta2013;103:15-22

[157]

Abbott AP,Mckenzie KJ.Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride.J Electroanal Chem2007;599:288-94

[158]

Xie Y,Zhang S,Ji X.Solubilities of CO2, CH4, H2, CO and N2 in choline chloride/urea.Green Energy Environ2016;1:195-200

[159]

Xu Q,Ji YN.A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability.Electrochim Acta2019;293:426-31

[160]

Lindberg D,Widersten M.Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis.J Biotechnol2010;147:169-71

[161]

Loow YL,Yang GH.Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery.Bioresour Technol2018;249:818-25

[162]

Liao HG,Zhou ZY,Sun SG.Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis.Angew Chem Int Ed2008;47:9100-3

[163]

Chirea M,Vasile BS,Pereira CM.Gold nanowire networks: synthesis, characterization, and catalytic activity.Langmuir2011;27:3906-13

[164]

Dong JY,Hsu YJ,Wong DS.Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies.CrystEngComm2012;14:4732-7

[165]

Huang Y,La J.Synthesis and characterization of CuCl nanoparticles in deep eutectic solvents.Part Sci Technol2013;31:81-4

[166]

Raghuwanshi VS,Hoell A,Rademann K.Deep eutectic solvents for the self-assembly of gold nanoparticles: a SAXS, UV-Vis, and TEM investigation.Langmuir2014;30:6038-46

[167]

Mjalli FS.Acoustic investigation of choline chloride based ionic liquids analogs.Fluid Phase Equilibria2014;381:71-6

[168]

Mezzomo L,Ostroman I.Deep eutectic solvent electrolytes based on trifluoroacetamide and LiPF6 for Li-metal batteries.J Power Sources2023;561:232746

[169]

Li W,Huang B.Suppressing growth of lithium dendrites by introducing deep eutectic solvents for stable lithium metal batteries.J Mater Chem A2022;10:15449-59

[170]

Hu Y,Huang X.Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries.Electrochem Commun2004;6:28-32

[171]

Liang Y,Li D.Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte.Adv Energy Mater2022;12:2202493

[172]

Joos B,da Cruz RR.Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes.Chem Mater2020;32:3783-93

[173]

Jaumaux P,Zhou D.Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries.Angew Chem Int Ed2020;59:9134-42

[174]

Li Z,Jiang Z,Gu C.Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery.Mater Chem Phys2021;267:124701

[175]

Wang S,Fang Q.Facilitating uniform lithium deposition via nanoconfinement of free amide molecules in solid electrolyte complexion for lithium metal batteries.Energy Stor Mater2023;54:596-604

[176]

Li Q,Li Y.Rapid self-healing gel electrolyte based on deep eutectic solvents for solid-state lithium batteries.ACS Appl Mater Inter2022;14:49700-8

[177]

Wu W,Cao M.Non-flammable dual-salt deep eutectic electrolyte for high-voltage lithium metal battery.Crystals2022;12:1290

[178]

Du Z,Belharouak I.Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes.Electrochem Commun2019;103:109-13

[179]

Hu Z,Guo Z.Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries.Chem Mater2020;32:3405-13

[180]

Hammond OS,Edler KJ.The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution.Angew Chem Int Ed2017;56:9782-5 PMCID:PMC5596335

[181]

Wang H,Zhang K.A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery.Energy Environ Sci2022;15:5149-58

[182]

Zhang H,Du X.Cyanoethyl cellulose-based eutectogel electrolyte enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries.Carbon Energy2022;4:1093-106

[183]

Mazzapioda L,Di Donato G,Navarra MA.Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries.Energy Mater2023;3:300019

[184]

Pervez SA,Vinayan BP.Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers.Small2020;16:e2000279

[185]

Xiong S,Jankowski P.Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries.Adv Funct Mater2020;30:2001444

[186]

Cao Y,Sun Z.Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries.Chem Eng J2020;382:123046

[187]

Kim HW,Lim YJ,Nam S.Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries.J Mater Chem A2016;4:17025-32

[188]

Tsurumaki A,Mazzapioda L.Inorganic-organic hybrid electrolytes based on Al-doped Li7La3Zr2O12 and ionic liquids.Appl Sci2022;12:7318

[189]

Abdelmaoula AE,Cheng Y.Core-shell MOF-in-MOF nanopore bifunctional host of electrolyte for high-performance solid-state lithium batteries.Small Methods2021;5:e2100508

[190]

Wu JF.Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries.Small2019;15:e1804413

[191]

Yang H,Bright J.A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries.ACS Appl Energy Mater2020;3:4007-13

PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

/