Could potassium-ion batteries become a competitive technology?

Maider Zarrabeitia , Javier Carretero-González , Michal Leskes , Henry Adenusi , Boyan Iliev , Thomas J S Schubert , Stefano Passerini , Elizabeth Castillo-Martinez

Energy Materials ›› 2023, Vol. 3 ›› Issue (6) : 300046

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (6) :300046 DOI: 10.20517/energymater.2023.41
Perspective

Could potassium-ion batteries become a competitive technology?

Author information +
History +
PDF

Abstract

Potassium-ion batteries (PIBs) have attracted significant attention as a complement to lithium-ion and sodium-ion batteries (SIBs). PIBs can theoretically provide higher specific energy and power density than SIBs due to lower standard electrode potential of K/K+ and faster K+ ion diffusion, maintaining the benefits of low-cost and sustainability. However, research on PIBs is in its infancy; therefore, further efforts are necessary to enhance their performance and position them as a competitive technology. In this perspective, the remaining challenges and possible strategies to advance the development of PIBs are presented.

Keywords

Sustainability / energy storage / potassium-ion batteries / electrolyte / cathode / anode

Cite this article

Download citation ▾
Maider Zarrabeitia, Javier Carretero-González, Michal Leskes, Henry Adenusi, Boyan Iliev, Thomas J S Schubert, Stefano Passerini, Elizabeth Castillo-Martinez. Could potassium-ion batteries become a competitive technology?. Energy Materials, 2023, 3(6): 300046 DOI:10.20517/energymater.2023.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RMIS - raw materials information system. Available from: https://rmis.jrc.ec.europa.eu/?page=crm-list-2020-e294f6/ [Last accessed on 14 Aug 2023]

[2]

Goikolea E,Wang S.Na-ion batteries - approaching old and new challenges.Adv Energy Mater2020;10:2002055

[3]

Hasa I,Saurel D.Challenges of today for Na-based batteries of the future: from materials to cell metrics.J Power Sources2021;482:228872

[4]

Murray JL.The Al-Na (aluminum-sodium) system.Bull Alloy Phase Diag1983;4:407-10

[5]

Li Q,Yu X. A 700 Wh kg-1 rechargeable pouch type lithium battery. Chin Phys Lett 2023;40:048201. Available from: https://iopscience.iop.org/article/10.1088/0256-307X/40/4/048201/meta [Last accessed on 14 Aug 2023]

[6]

CATL news. The first-generation sodium-ion battery launch event. Available from: https://www.catl.com/en/news/685.html [Last accessed on 14 Aug 2023]

[7]

Xu Y,Chen J.2023 roadmap for potassium-ion batteries.J Phys Energy2023;5:021502

[8]

Energy storage news. Available from: www.energy-storage.news/potassium-ion-batterystartup-group1-lfp-is-our-benchmark/ [Last accessed on 14 Aug 2023]

[9]

Xu Z.Toward emerging sodium-based energy storage technologies: from performance to sustainability.Adv Energy Mater2022;12:2201692

[10]

Liu M,Wu F.Advances in carbon materials for sodium and potassium storage.Adv Funct Mater2022;32:2203117

[11]

Sun L,Zhang S.Practical assessment of the energy density of potassium-ion batteries. Sci China Chem 2022.

[12]

Songster J.The Al-K (aluminum-potassium) system.JPE1993;14:366

[13]

Vaalma C,Weil M.A cost and resource analysis of sodium-ion batteries.Nat Rev Mater2018;3:18013

[14]

Komaba S,Dahbi M.Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors.Electrochem Communn2015;60:172-5

[15]

Greenwood NN. Chemistry of the elements. Oxford: Pergamon Pub; First edition 1984, reprinted 1989, p. 253.

[16]

Madram AR,Sovizi MR.Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries.RSC Adv2016;6:101477-84

[17]

Nathan MGT,Kim GT.Recent advances in layered metal-oxide cathodes for application in potassium-ion batteries.Adv Sci2022;9:e2105882 PMCID:PMC9218662

[18]

Jian Z,Ji X.Carbon electrodes for K-ion batteries.J Am Chem Soc2015;137:11566-9

[19]

Zhang X,Dinh KN. Layered oxide cathode for potassium-ion battery: recent progress and prospective. Small 2020;16:2002700. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202002700 [Last accessed on 23 Aug 2023]

[20]

Yang J,Jo MR.In situ analyses for ion storage materials.Chem Soc Rev2016;45:5717-70

[21]

Zhang Q,Pang WK.Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry.Adv Energy Mater2018;8:1703288

[22]

Wang H,Chen S.A depth-profiling study on the solid electrolyte interface: bis(fluorosulfuryl)imide anion toward improved K+ storage.ACS Appl Energy Mater2019;2:7942-51

[23]

Zhao J,Zhu Y,Wang C.Electrochemical intercalation of potassium into graphite.Adv Funct Mater2016;26:8103-10

[24]

Chihara K,Kubota K.KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries.Chem Commun2017;53:5208-11

[25]

Zhang W,Guo Z.Approaching high-performance potassium-ion batteries via advanced design strategies and engineering.Sci Adv2019;5:eaav7412 PMCID:PMC6510555

[26]

Zeng G,Qian Y,Feng J.Non-flammable phosphate electrolyte with high salt-to-solvent ratios for safe potassium-ion battery.J Electrochem Soc2019;166:A1217

[27]

Silvester DS,Doblinger S,Atkin R.Electrical double layer structure in ionic liquids and its importance for supercapacitor, battery, sensing, and lubrication applications.J Phys Chem C2021;125:13707-20

[28]

Zhu X,Song M,Fan Z.Recent advances in polymers for potassium ion batteries.Polymers2022;14:5538 PMCID:PMC9788096

[29]

Hammami A,Armand M.Lithium-ion batteries: runaway risk of forming toxic compounds.Nature2003;424:635-6

[30]

Sloop SE,Wang S,Kinoshita K.Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions.Electrochem Solid-State Lett2001;4:A42

[31]

Hekmatfar M,Eghbal R,Moretti A.Effect of electrolyte additives on the LiNi0.5Mn0.3Co0.2O2 surface film formation with lithium and graphite negative electrodes.Adv Mater Interfaces2020;7:1901500

[32]

Komaba S,Yabuuchi N,Ito A.Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries.ACS Appl Mater Interfaces2011;3:4165-8

[33]

Ells AW,Marbella LE.Potassium fluoride and carbonate lead to cell failure in potassium-ion batteries.ACS Appl Mater Interfaces2021;13:53841-9

[34]

Liu G,Zhou L.Additives engineered nonflammable electrolyte for safer potassium ion batteries.Adv Funct Mater2020;30:2001934

[35]

Hosaka T,Matsuyama T,Kubota K.1,3,2-dioxathiolane 2,2-dioxide as an electrolyte additive for K-metal cells.ACS Energy Lett2021;6:3643-9

[36]

Liu S,Zhang Q.An intrinsically non-flammable electrolyte for high-performance potassium batteries.Angew Chem Int Ed2020;59:3638-44

[37]

Yoshii K,Kato M,Senoh H.Sulfonylamide-based ionic liquids for high-voltage potassium-ion batteries with honeycomb layered cathode oxides.ChemElectroChem2019;6:3901-10

[38]

Elmanzalawy M,Kisacik O,Castillo-martínez E.High conductivity in a fluorine-free K-ion polymer electrolyte.ACS Appl Energy Mater2022;5:9009-19

[39]

Fei H,An Y.Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode.J Power Sources2019;433:226697

[40]

Schaefer JL,Archer LA.Nanoscale organic hybrid electrolytes.Adv Mater2010;22:3677-80

[41]

Zheng J,Liu X,Feng X.Progress in gel polymer electrolytes for sodium-ion batteries.Energy Environ Mater2022;6:e12422

[42]

Kubota K,Hosaka T,Komaba S.Towards K-ion and Na-ion batteries as “beyond Li-ion”.Chem Rec2018;18:459-79

[43]

Rajagopalan R,Ji X,Wang H.Advancements and challenges in potassium ion batteries: a comprehensive review.Adv Funct Mater2020;30:1909486

[44]

Deng L,Niu X.Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries.Nat Commun2021;12:2167 PMCID:PMC8041879

[45]

Zhou M,Sun Y.Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries.Nano Res2023;16:6326-33

[46]

Vaalma C,Buchholz D.Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black.J Electrochem Soc2016;163:A1295

[47]

Pan J,Yan Y.Revisit electrolyte chemistry of hard carbon in ether for Na storage.JACS Au2021;1:1208-16 PMCID:PMC8397355

[48]

Arnaiz M,Ajuria J,Goikolea E.Protic and aprotic ionic liquids in combination with hard carbon for lithium-ion and sodium-ion batteries.Batteries Supercaps2018;1:204-8

[49]

Wu J,Wang M.Electrospun carbon-based nanomaterials for next-generation potassium batteries.Chem Commun2023;59:2381-98

[50]

Qiann Y,Li Y.In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries.Adv Energy Mater2019;9:1901676

[51]

Wu X,Liu J,Gaumet J.Defect engineering of hierarchical porous carbon microspheres for potassium-ion storage.Rare Met2022;41:3446-55

[52]

Li W,Zhang C.Hard carbon derived from rice husk as anode material for high performance potassium-ion batteries.Solid State Ion2020;351:115319

[53]

Jo JH,Yaqoob N.Hollandite-type potassium titanium oxide with exceptionally stable cycling performance as a new cathode material for potassium-ion batteries.Energy Stor Mater2023;54:680-8

[54]

Imtiaz S,Xu Y,Blackman C.Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries.Mater Today2021;48:241-69

[55]

Zhang W,Zhang Q.Organic materials as electrodes in potassium-ion batteries.Chemistry2021;27:6131-44

[56]

Lei K,Mu C.High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes.Energy Environ Sci2017;10:552-7

[57]

Kang Z,Sun CF.A plastics-derived organic anode material for practical and sustainable potassium-ion batteries.Int J Electrochem Sci2023;18:100222

[58]

Bresser D,Moretti A,Passerini S.Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers.Energy Environ Sci2018;11:3096-127

[59]

Wu X,Hu Y.Effects of functional binders on electrochemical performance of graphite anode in potassium-ion batteries.Ionics2019;25:2563-74

[60]

Harper G,Kendrick E.Recycling lithium-ion batteries from electric vehicles.Nature2019;575:75-86

[61]

Haber S.What can we learn from solid state NMR on the electrode-electrolyte interface?.Adv Mater2018;30:e1706496

[62]

Leskes M,Liu T.Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide.J Phys Chem Lett2017;8:1078-85

[63]

Haber S,Saha A.Structure and functionality of an alkylated LixSiyOz interphase for high-energy cathodes from DNP-ssNMR spectroscopy.J Am Chem Soc2021;143:4694-704

[64]

Ji S,Li J.Dynamic reversible evolution of solid electrolyte interface in nonflammable triethyl phosphate electrolyte enabling safe and stable potassium-ion batteries.Adv Funct Mater2022;32:2200771

PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

/