Room temperature ionic liquids viscosity prediction from deep-learning models

Zafer Acar , Phu Nguyen , Xiaoqi Cui , Kah Chun Lau

Energy Materials ›› 2023, Vol. 3 ›› Issue (5) : 300039

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (5) :300039 DOI: 10.20517/energymater.2023.38
Article

Room temperature ionic liquids viscosity prediction from deep-learning models

Author information +
History +
PDF

Abstract

Ionic liquids (ILs) are a new group of novel solvents with great potential in design-synthesis. They are promising electrolyte candidates in energy storage applications, especially in rechargeable batteries. However, in practice, their usage remains limited due to the unfavorable high-viscosity (η) property at ambient conditions. To optimize the design synthesis of ILs, a systematic fundamental study of their structure-property relationship is deemed necessary. In this study, we employed a deep-learning (DL) model to predict the room-temperature viscosity of a wide range of ILs that consist of various cationic and anionic families. Based on this DL model, accurate prediction of IL viscosity can be realized, reaching an R2 score of 0.99 with a root mean square error of ~45 mPa·s. To further help identify low- and high-η ILs, a low/high-η binary classification model with an overall accuracy of 93% for test prediction is obtained based on the DL model. From the important structure-property relationship analysis governed by the top-rank molecular descriptors of this model, a list of very low-η ILs (i.e., η < 30 mPa·s) that could be potentially useful in battery electrolytes is identified. Based on the finding of the DL model, it suggests that in order to achieve low-η, grafting IL cations into smaller sizes (e.g., smaller head rings) and short alkyl chains and reducing ionization potentials/energies will help. Meanwhile, for the same cations, further reducing anions in sizes, chain lengths, and hydrogen bonds might be useful to further reduce the viscosity. Thus, with a fine selection and molecular grafting of anionic and cationic species in ILs, we believe fine-tuning IL viscosities can be achieved through the proper design synthesis of functional groups in ILs.

Keywords

Machine learning / deep learning / ionic liquids / batteries / viscosity

Cite this article

Download citation ▾
Zafer Acar, Phu Nguyen, Xiaoqi Cui, Kah Chun Lau. Room temperature ionic liquids viscosity prediction from deep-learning models. Energy Materials, 2023, 3(5): 300039 DOI:10.20517/energymater.2023.38

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough JB.Electrochemical energy storage in a sustainable modern society.Energy Environ Sci2014;7:14-8

[2]

Trahey L,Balsara NP.Energy storage emerging: a perspective from the joint center for energy storage research.Proc Natl Acad Sci USA2020;117:12550-7 PMCID:PMC7293617

[3]

Aurbach D,Salitra G.High energy density rechargeable batteries based on Li metal anodes. the role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents.J Am Chem Soc2021;143:21161-76

[4]

Li Q,Fan L,Lu Y.Progress in electrolytes for rechargeable Li-based batteries and beyond.Green Energy Environ2016;1:18-42

[5]

Lu J,Luo X.A lithium-oxygen battery based on lithium superoxide.Nature2016;529:377-82

[6]

Ponnada S,Gorle DB.History and recent developments in divergent electrolytes towards high-efficiency lithium-sulfur batteries - a review.Mater Adv2021;2:4115-39

[7]

Watanabe M,Zhang S,Yasuda T.Application of ionic liquids to energy storage and conversion materials and devices.Chem Rev2017;117:7190-239

[8]

Balducci A.Ionic liquids in lithium-ion batteries.Top Curr Chem2017;375:20

[9]

Zhang J,Zhao Y.A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries.Nat Commun2019;10:602 PMCID:PMC6363722

[10]

Josef E,Stan MC.Ionic liquids and their polymers in lithium-sulfur batteries.Isr J Chem2019;59:832-42

[11]

Ortiz-martínez V,Pérez G,Ortiz I.The roles of ionic liquids as new electrolytes in redox flow batteries.Sep Purif Technol2020;252:117436

[12]

Giffin GA.The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries.Nat Commun2022;13:5250 PMCID:PMC9448741

[13]

Cao X.Important factors for the reliable and reproducible preparation of non-aqueous electrolyte solutions for lithium batteries.Commun Mater2023;4:10

[14]

Martin S,Anderson TM.Screening for high conductivity/low viscosity ionic liquids using product descriptors.Mol Inform2017;36:1600125

[15]

Tiago GAO,Ribeiro APC.Application of ionic liquids in electrochemistry-recent advances.Molecules2020;25:5812 PMCID:PMC7763911

[16]

Barthen P,Ignatiev N.Development of low viscous ionic liquids: the dependence of the viscosity on the mass of the ions.Ionics2015;21:149-59

[17]

Tsuzuki S,Saito H,Tokuda H.Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions.J Phys Chem B2009;113:10641-9

[18]

Jiang S,Wang Y.Viscosity of typical room-temperature ionic liquids: a critical review.J Phys Chem Ref Data2019;48:033101

[19]

Philippi F,Eliasen KL.Pressing matter: why are ionic liquids so viscous?.Chem Sci2022;13:2735-43 PMCID:PMC8890108

[20]

Koutsoukos S,Malaret F.A review on machine learning algorithms for the ionic liquid chemical space.Chem Sci2021;12:6820-43 PMCID:PMC8153233

[21]

Hayes R,Atkin R.Structure and nanostructure in ionic liquids.Chem Rev2015;115:6357-426

[22]

Marullo S,Rizzo C.Ionic liquids: “normal” solvents or nanostructured fluids?.Org Biomol Chem2021;19:2076-95

[23]

Lei Z,Koo YM.Introduction: ionic liquids.Chem Rev2017;117:6633-5

[24]

Diogo JCF,Fareleira JMNA.Viscosity measurements on ionic liquids: a cautionary tale.Int J Thermophys2014;35:1615-35

[25]

Bedrov D,Borodin O,Roux B.Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields.Chem Rev2019;119:7940-95 PMCID:PMC6620131

[26]

Zhang Y,Maginn EJ.Reliable viscosity calculation from equilibrium molecular dynamics simulations: a time decomposition method.J Chem Theory Comput2015;11:3537-46

[27]

Kirova EM.Viscosity calculations at molecular dynamics simulations.J Phys Conf Ser2015;653:012106

[28]

Goloviznina K,Costa Gomes M.Transferable, polarizable force field for ionic liquids.J Chem Theory Comput2019;15:5858-71

[29]

Vázquez-Montelongo EA,Cisneros GA.Current status of AMOEBA-IL: a multipolar/polarizable force field for ionic liquids.Int J Mol Sci2020;21:697 PMCID:PMC7037047

[30]

Katritzky AR,Lomaka A.Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program.J Chem Inf Comput Sci2002;42:225-31

[31]

Berrod Q,Zanotti JM.Ionic liquids: evidence of the viscosity scale-dependence.Sci Rep2017;7:2241 PMCID:PMC5440414

[32]

Chen Y,Kontogeorgis GM.Machine learning for the prediction of viscosity of ionic liquid-water mixtures.J Mol Liq2022;350:118546

[33]

Paduszyński K.Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network.J Chem Inf Model2014;54:1311-24

[34]

Paduszyński K.Extensive databases and group contribution QSPRs of ionic liquids properties. 2. viscosity.Ind Eng Chem Res2019;58:17049-66

[35]

Chen B,Wu T.A high correlate and simplified QSPR for viscosity of imidazolium-based ionic liquids.Fluid Phase Equilibria2013;350:37-42

[36]

Beckner W,Pfaendtner J.Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions.Mol Syst Des Eng2018;3:253-63

[37]

Baskin I,Ein-eli Y.Benchmarking machine learning methods for modeling physical properties of ionic liquids.J Mol Liq2022;351:118616

[38]

Boualem AD,Benkouider AM,Toubal K.Viscosity prediction of ionic liquids using NLR and SVM approaches.J Mol Liq2022;368:120610

[39]

Goodfellow I,Courville A. Deep learning, 1st ed. Cambridge, MA: MIT Press; 2016, pp. 363-405.

[40]

Schmidhuber J.Deep learning in neural networks: an overview.Neural Netw2015;61:85-117

[41]

Sarker IH.Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions.SN Comput Sci2021;2:420 PMCID:PMC8372231

[42]

Sejnowski TJ.The unreasonable effectiveness of deep learning in artificial intelligence.Proc Natl Acad Sci USA2020;117:30033-8 PMCID:PMC7720171

[43]

Liu Y,Ju W.Materials discovery and design using machine learning.J Materiomics2017;3:159-77

[44]

Liu Y,Zou X,Shi S.Machine learning assisted materials design and discovery for rechargeable batteries.Energy Stor Mater2020;31:434-50

[45]

Dong Q,Muzny C. Ionic liquids database - ILThermo. 2006. Available online: https://ilthermo.boulder.nist.gov/ILThermo/mainmenu.uix [Last accessed on 16 August 2023]

[46]

Kazakov A,Chirico R. Ionic liquids database - ILThermo (v2.0). 2013. Available online: https://trcsrv1.boulder.nist.gov/ilthermo/ilthermo.html [Last accessed on 16 August 2023].

[47]

Acar Z,Lau KC.Machine-learning model prediction of ionic liquids melting points.Appl Sci2022;12:2408

[48]

Talete srl dragon. Version 7.0 software for molecular descriptor calculation. Available online: https://chm.kode-solutions.net/pf/dragon-7-0/ [Last accessed on 16 August 2023].

[49]

Todeschini R. Molecular descriptors for chemoinformatics, 1st ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co; 2009.

[50]

Pedregosa F,Gramfort A.Scikit-learn: machine learning in python.J Mach Learn Res2011;12:2825-30Available online: https://github.com/scikit [Last accessed on 16 August 2023]

[51]

Gutman I,Milovanović I.Beyond the zagreb indices.AKCE Int J Graphs Comb2020;17:74-85

[52]

Bertz SH.Branching in graphs and molecules.Discret Appl Math1988;19:65-83

[53]

Abadi M,Barham P. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2015. Available online: https://research.google/pubs/pub45166/ [Last accessed on 16 August 2023].

[54]

Kingma DP.Adam: a method for stochastic optimization.arXiv2017;1412.6980

[55]

Chen Y,Woodley JM.Group contribution based estimation method for properties of ionic liquids.Ind Eng Chem Res2019;58:4277-92

[56]

Baghban A,Habibzadeh S.Prediction viscosity of ionic liquids using a hybrid LSSVM and group contribution method.J Mol Liq2017;236:452-64

[57]

Lazzús JA.A group contribution method to estimate the viscosity of ionic liquids at different temperatures.J Mol Liq2015;209:161-8

[58]

Huang Y,Zhang X,Zhang S.A new fragment contribution-corresponding states method for physicochemical properties prediction of ionic liquids.AIChE J2013;59:1348-59

[59]

Zhou W,Kong X,Zhang Q.Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries.Adv Sci2021;8:2004490 PMCID:PMC8261505

[60]

Geron A. Hands-on machine-learning with scikit-learn, Keras and TensorFlow, 2nd ed. Canada: O’Reilley; 2019.

[61]

Reutlinger M,Reker D.Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for 'orphan' molecules.Mol Inform2013;32:133-8 PMCID:PMC3743170

[62]

Randić M,Grossman S.A rational approach to the optimal design of drugs.Math Model1987;8:571-82

[63]

Randić M.On a fragment approach to structure-activity correlations.Quant Struct Act Relat1989;8:39-48

[64]

Yuan WL,He L,Qin S.Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids.Front Chem2018;6:59 PMCID:PMC5862833

[65]

Labute P.A widely applicable set of descriptors.J Mol Graph Model2000;18:464-77

[66]

Broto P,Vandicke C.Molecular structures: perception, autocorrelation descriptor and sar studies. Autocorrelation descriptor.Eur J Med Chem1984;19:66-70Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9624511 [Last accessed on 18 August 2023].

PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

/