Stretchable microbatteries and microsupercapacitors for next-generation wearable electronics

Chong Bai , Sisi Li , Kang Ji , Menglu Wang , Desheng Kong

Energy Materials ›› 2023, Vol. 3 ›› Issue (5) : 300041

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (5) :300041 DOI: 10.20517/energymater.2023.31
Perspective

Stretchable microbatteries and microsupercapacitors for next-generation wearable electronics

Author information +
History +
PDF

Abstract

Stretchable energy-storage devices are required to power next-generation wearable electronics intimately integrated with the human body. The microbatteries and microsupercapacitors represent promising candidates featuring small footprints and facile system integration. This perspective reviews common strategies to convert conventional rigid devices into stretchable forms. Several prototype soft electronic systems are presented utilizing microbatteries and microsupercapacitors as power sources. We discuss the current challenges and perspectives of the stretchable microbattery and microsupercapacitor. Stretchable forms of miniaturized energy-storage devices often show a significant trade-off between mechanical deformability and electrochemical performances, which present attractive opportunities for the material and engineering community.

Keywords

Microbattery / microsupercapacitor / stretchable electronics / wearable electronics / energy-storage devices

Cite this article

Download citation ▾
Chong Bai, Sisi Li, Kang Ji, Menglu Wang, Desheng Kong. Stretchable microbatteries and microsupercapacitors for next-generation wearable electronics. Energy Materials, 2023, 3(5): 300041 DOI:10.20517/energymater.2023.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Someya T,Malliaras GG.The rise of plastic bioelectronics.Nature2016;540:379-85

[2]

Chortos A,Bao Z.Pursuing prosthetic electronic skin.Nat Mater2016;15:937-50

[3]

Chung HU,Lee JY.Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care.Science2019;363:eaau0780 PMCID:PMC6510306

[4]

Wang S,Wang W.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.Nature2018;555:83-8

[5]

Tian L,Akhtar A.Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring.Nat Biomed Eng2019;3:194-205

[6]

Liu R,Fukuda K.Flexible self-charging power sources.Nat Rev Mater2022;7:870-86

[7]

Chen G,Bick M.Smart textiles for electricity generation.Chem Rev2020;120:3668-720

[8]

Wang P,Wang H.The evolution of flexible electronics: from nature, beyond nature, and to nature.Adv Sci2020;7:2001116 PMCID:PMC7578875

[9]

Huang J,Feng Y.Research progress on key materials and technologies for secondary batteries.Acta Phys Chim Sin2022;38:2208008

[10]

Bassyouni Z,Abou Ziki JD.Microsized electrochemical energy storage devices and their fabrication techniques for portable applications.Adv Mater Technol2023;8:2200459

[11]

Kyeremateng NA,Pech D.Microsupercapacitors as miniaturized energy-storage components for on-chip electronics.Nat Nanotech2017;12:7-15

[12]

Cai X,Zha J.A flexible and safe planar zinc-ion micro-battery with ultrahigh energy density enabled by interfacial engineering for wearable sensing systems.Adv Funct Mater2023;33:2303009

[13]

Dong H,Liao Y.Floating catalyst chemical vapor deposition patterning nitrogen-doped single-walled carbon nanotubes for shape tailorable and flexible micro-supercapacitors.Adv Funct Mater2023;33:2301103

[14]

Yan W,Tan F,Zhao J.3D printing flexible zinc-ion microbatteries with ultrahigh areal capacity and energy density for wearable electronics.Chem Commun2023;59:1661-4

[15]

Song L,Dai C.Recent progress and challenges in interdigital microbatteries: fabrication, functionalization and integration.J Energy Chem2023;78:294-314

[16]

Qin J,Yang Z.Recent advances and key opportunities on in-plane micro-supercapacitors: from functional microdevices to smart integrated microsystems.J Energy Chem2023;81:410-31

[17]

Wang M,Bai C.Ultrastretchable MXene microsupercapacitors.Small2023;19:e2300386

[18]

Lee G,Park H.Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte.ACS Nano2019;13:855-66

[19]

Kim D,Lee H.Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices.Adv Mater2016;28:748-56

[20]

Bai C,Feng S,Kong D.An intrinsically stretchable aqueous Zn-MnO2 battery based on microcracked electrodes for self-powering wearable electronics.Energy Stor Mater2022;47:386-93

[21]

Kumar R,Yin L,Meng YS.All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics.Adv Energy Mater2017;7:1602096

[22]

Yun J,Jang GN.Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array.Nano Energy2016;19:401-14

[23]

Wu Y,Ho D.Biaxial Stretching array based on high-energy-efficient MXene-based Al-ion micro-supercapacitor island and editable stretchable bridge.ACS Appl Mater Interfaces2022;14:55770-9

[24]

Lim Y,Yun J.Biaxially stretchable, integrated array of high performance microsupercapacitors.ACS Nano2014;8:11639-50

[25]

Li T,Suo Z,Wagner S.Stretchability of thin metal films on elastomer substrates.App Phys Lett2004;85:3435-7

[26]

Yun J,Lee H.Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor.Nano Energy2018;49:644-54

[27]

Dickey MD.Stretchable and soft electronics using liquid metals.Adv Mater2017;29:1606425

[28]

Zhao J,Fang W,Zhang W.Liquid-metal-bridge~island design: seamless integration of intrinsically stretchable liquid metal circuits and mechanically deformable structures for ultra-stretchable all-solid-state rechargeable Zn-air battery arrays.J Mater Chem A2021;9:5097-110

[29]

Kim DH,Ma R.Epidermal electronics.Science2011;333:838-43

[30]

Li L,Han W,Jiang K.Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes.Adv Mater Technol2017;2:1600282

[31]

Yun J,Song C.A fractal-designed stretchable and transparent microsupercapacitor as a skin-attachable energy storage device.Chem Eng J2020;387:124076

[32]

Matsuhisa N,Bao Z.Materials and structural designs of stretchable conductors.Chem Soc Rev2019;48:2946-66

[33]

Nasreldin M,Marchiori B.Microstructured electrodes supported on serpentine interconnects for stretchable electronics.APL Mater2019;7:031507

[34]

Jiao S,Wu M.Kirigami patterning of MXene/Bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays.Adv Sci2019;6:1900529 PMCID:PMC6662096

[35]

Qi D,Liu Y.Suspended wavy graphene microribbons for highly stretchable microsupercapacitors.Adv Mater2015;27:5559-66

[36]

Jiang S,Xiao H,Xu X.Robust and durable flexible micro-supercapacitors enabled by graphene nanoscrolls.Chem Eng J2021;405:127009

[37]

Wang Y,Han Y.Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors.Sci Adv2022;8:eabn8338 PMCID:PMC9140961

[38]

Anasori B,Gogotsi Y.2D metal carbides and nitrides (MXenes) for energy storage.Nat Rev Mater2017;2:16098

[39]

Mathis TS,Goad A.Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene.ACS Nano2021;15:6420-9

[40]

Chen W,Zhou X.Highly deformable graphene/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) hydrogel composite film for stretchable supercapacitors.ACS Appl Energy Mater2022;5:7277-86

[41]

An T,Ling Y,Cheng W.A janus gold nanowire electrode for stretchable micro-supercapacitors with distinct capacitances.J Mater Chem A2019;7:14233-8

[42]

Yang J,Deng J.Stretchable, transparent and imperceptible supercapacitors based on Au@MnO2 nanomesh electrodes.Chem Comm2019;55:13737-40

[43]

Gaikwad AM,Rousseau J,Derin I.Highly stretchable alkaline batteries based on an embedded conductive fabric.Adv Mater2012;24:5071-6

[44]

Park S,Wang J.Coaxial Ag-base metal nanowire networks with high electrochemical stability for transparent and stretchable asymmetric supercapacitors.Nanoscale Horiz2017;2:199-204

[45]

Tehrani F,Sheth K.Laser-induced graphene composites for printed, stretchable, and wearable electronics.Adv Mater Technol2019;4:1900162

[46]

Li X,Fan X,Liang J.3D-printed stretchable micro-supercapacitor with remarkable areal performance.Adv Energy Mater2020;10:1903794

[47]

Bai C,Wang H,Hu G.Intrinsically Stretchable microbattery with ultrahigh deformability for self-powering wearable electronics.ACS Mater Lett2022;4:2401-8

[48]

Li Y,Bandari VK.On-chip batteries for dust-sized computers.Adv Energy Mater2022;12:2103641

[49]

Gu C,Zhang K.A full-device autonomous self-healing stretchable soft battery from self-bonded eutectogels.Adv Mater2023;35:2208392

[50]

Ye T,Jiao Y.A tissue-like soft all-hydrogel battery.Adv Mater2022;34:2105120

[51]

Noh MJ,Choi JH.Layer-by-layer assembled multilayers of charged polyurethane and graphene oxide platelets for flexible and stretchable gas barrier films.Soft Matter2018;14:6708-15

[52]

Holder KM,Huff ME,Harth E.Stretchable gas barrier achieved with partially hydrogen-bonded multilayer nanocoating.Macromol Rapid Comm2014;35:960-4

[53]

Ochirkhuyag N,Mizuguchi S.Stretchable gas barrier films using liquid metal toward a highly deformable battery.ACS Appl Mater Interfaces2022;14:48123-32

[54]

Shen Q,Wang R.Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems.Science2023;379:488-93

[55]

Chen X,Pan L,Niederberger M.Fully integrated design of a stretchable solid-state lithium-ion full battery.Adv Mater2019;31:e1904648

[56]

Lv J,Tehrani F.Sweat-based wearable energy harvesting-storage hybrid textile devices.Energy Environ Sci2018;11:3431-42

[57]

Li H,Fang J.Recent advances in wearable aqueous metal-air batteries: from configuration design to materials fabrication.Adv Mater Technol2023;8:2201762

[58]

Zhang S,Hao J,Beirne S.3D-printed wearable electrochemical energy devices.Adv Funct Mater2022;32:2103092

[59]

Chen C,Wang X.Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector.Nano Energy2017;42:187-94

[60]

Cong Z,Guo Z.Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors.ACS Nano2020;14:5590-9

[61]

Yang HJ,Seo SH.Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes.Nano Energy2021;86:106083

PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

/