Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries

Junli Shi , Huu-Dat Nguyen , Zhen Chen , Rui Wang , Dominik Steinle , Lester Barnsley , Jie Li , Henrich Frielinghaus , Dominic Bresser , Cristina Iojoiu , Elie Paillard

Energy Materials ›› 2023, Vol. 3 ›› Issue (4) : 300036

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (4) :300036 DOI: 10.20517/energymater.2023.27
Article

Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries

Author information +
History +
PDF

Abstract

Herein, a single-ion polymer electrolyte is reported for high-voltage and low-temperature lithium-metal batteries that enables suppressing the growth of dendrites, even at high current densities of 2 mA cm-2. The nanostructured electrolyte was introduced into the cell by mechanically processing the polymer powder via an easily scalable process. Important for the potential application in commercial battery cells is the finding that it does not induce aluminum corrosion at high voltages and leads to low interfacial resistance with lithium metal. These beneficial characteristics, in combination with its high single-ion conductivity and its high anodic stability, allow for the stable cycling of state-of-the-art lithium-ion cathodes, such as NMC111 and NMC622, in combination with a lithium metal anode at 20 °C and even 0 °C for several hundred cycles.

Keywords

Polymer electrolyte / single-ion conductor / lithium metal / NMC / battery

Cite this article

Download citation ▾
Junli Shi, Huu-Dat Nguyen, Zhen Chen, Rui Wang, Dominik Steinle, Lester Barnsley, Jie Li, Henrich Frielinghaus, Dominic Bresser, Cristina Iojoiu, Elie Paillard. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries. Energy Materials, 2023, 3(4): 300036 DOI:10.20517/energymater.2023.27

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Colin AV.Lithium batteries: a 50-year perspective, 1959–2009.Solid State Ion2000;134:124-9

[2]

Zaghib K,Guerfi A,Perrier M.Safe Li-ion polymer batteries for HEV applications.J Power Sources2004;134:124-9

[3]

Iojoiu C.Solid-state batteries with polymer electrolytes. In: Bard AJ, editor. Encyclopedia of Electrochemistry. Wiley; 2007. pp. 1-49.

[4]

Chazalviel J.Electrochemical aspects of the generation of ramified metallic electrodeposits.Phys Rev A1990;42:7355-67

[5]

Peled E.The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model.J Electrochem Soc1979;126:2047-51

[6]

Peled E.Review-SEI: past, present and future.J Electrochem Soc2017;164:A1703-19

[7]

Rosso M,Brissot C,Lascaud S.Onset of dendritic growth in lithium/polymer cells.J Power Sources2001;97-98:804-6

[8]

Barai P,Srinivasan V.Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies.Phys Chem Chem Phys2017;19:20493-505

[9]

Cao X,Zou L.Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization.Nat Energy2019;4:796-805

[10]

Grande L,Koch SL,Paillard E.Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.ACS Appl Mater Inter2015;7:5950-8

[11]

Qian J,Xu W.High rate and stable cycling of lithium metal anode.Nat Commun2015;6:6362 PMCID:PMC4346622

[12]

Qian J,Zheng J.Anode-free rechargeable lithium metal batteries.Adv Funct Mater2016;26:7094-102

[13]

Qian J,Bhattacharya P.Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive.Nano Energy2015;15:135-44

[14]

Zheng G,Liang Z.Interconnected hollow carbon nanospheres for stable lithium metal anodes.Nat Nanotechnol2014;9:618-23

[15]

Ohno H.Poly(ethylene oxide)s having carboxylate groups on the chain end.Polymer1995;36:891-3

[16]

Zhang H,Piszcz M.Single lithium-ion conducting solid polymer electrolytes: advances and perspectives.Chem Soc Rev2017;46:797-815

[17]

Bannister D,Ward I.Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers.Polymer1984;25:1291-6

[18]

Jiang C,Wang C.Recent progress in solid-state electrolytes for alkali-ion batteries.Sci Bull2017;62:1473-90

[19]

Strauss F,Kim A.Rational design of quasi-zero-strain NCM cathode materials for minimizing volume change effects in all-solid-state batteries.ACS Mater Lett2020;2:84-8

[20]

Ruzette AG,Sadoway DR.Melt-formable block copolymer electrolytes for lithium rechargeable batteries.J Electrochem Soc2001;148:A537

[21]

Soo PP,Jang Y,Sadoway DR.Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries.J Electrochem Soc1999;146:32-7

[22]

Miller TF,Coates GW.Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries.ACC Chem Res2017;50:590-3

[23]

Inceoglu S,Devaux D,Stone GM.Morphology-conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries.ACS Macro Lett2014;3:510-4

[24]

Bouchet R,Meziane R.Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries.Nat Mater2013;12:452-7

[25]

Nguyen H,Shi J.Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries.Energy Environ Sci2018;11:3298-309

[26]

Assumma L,Mercier R,Nguyen HD.Synthesis of partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions.J Polym Sci Part A Polym Chem2015;53:1941-56

[27]

Nguyen HD,Judeinstein P.Controlling microstructure-transport interplay in highly phase-separated perfluorosulfonated aromatic multiblock ionomers via molecular architecture design.ACS Appl Mater Inter2017;9:1671-83

[28]

Gorecki W,Berthier C.NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte: PEO(LiClO4)x.Solid State Ion1986;18-19:295-9

[29]

Landesfeind J,Ehrl A,Gasteiger HA.Tortuosity determination of battery electrodes and separators by impedance spectroscopy.J Electrochem Soc2016;163:A1373-87

[30]

Thomas KE,Kerr JB.Comparison of lithium-polymer cell performance with unity and nonunity transference numbers.J Power Sources2000;89:132-8

[31]

González F,García N.High performance polymer/ionic liquid thermoplastic solid electrolyte prepared by solvent free processing for solid state lithium metal batteries.Membranes2018;8:55 PMCID:PMC6160972

[32]

Grande L,Kim GT,Passerini S.Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.Int J Mol Sci2014;15:8122-37 PMCID:PMC4057723

[33]

Kim G,Carewska M.UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids.J Power Sources2010;195:6130-7

[34]

Cheng J,Huang C.Visualization of lithium plating and stripping via in operando transmission X-ray microscopy.J Phys Chem C2017;121:7761-6

[35]

Yang C,Qing T.4.0 V aqueous Li-ion batteries.Joule2017;1:122-32

[36]

Nasirzadeh K,Kunz W.Vapor pressures of propylene carbonate and N, N-dimethylacetamide.J Chem Eng Data2005;50:26-8

PDF

49

Accesses

0

Citation

Detail

Sections
Recommended

/