Toward safer lithium metal batteries: a review

Shifei Kang , Jinmin Cheng , Weikang Gao , Lifeng Cui

Energy Materials ›› 2023, Vol. 3 ›› Issue (5) : 300043

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (5) :300043 DOI: 10.20517/energymater.2023.24
Review

Toward safer lithium metal batteries: a review

Author information +
History +
PDF

Abstract

The energy density of conventional graphite anode batteries is insufficient to meet the requirement for portable devices, electric cars, and smart grids. As a result, researchers have diverted to lithium metal anode batteries. Lithium metal has a theoretical specific capacity (3,860 mAh·g-1) significantly higher than that of graphite. Additionally, it has a lower redox potential of -3.04 V compared to standard hydrogen electrodes. These properties make high-energy lithium metal batteries a promising candidate for next-generation energy storage devices, which have garnered significant interest for several years. However, the high activity of lithium metal anodes poses safety risks (e.g., short circuits and thermal runaway) that hinder their commercial growth. Currently, modification of reversible lithium anodes is the primary focus of lithium metal batteries. This article presents conceptual models and numerical simulations that address failure processes and offer specific techniques to mitigate the challenges of lithium metal anodes, including electrolyte design, interface engineering, and electrode modification. It is expected that lithium metal batteries will recover and become a feasible energy storage solution.

Keywords

Lithium metal anodes / safety hazards / modification technology

Cite this article

Download citation ▾
Shifei Kang, Jinmin Cheng, Weikang Gao, Lifeng Cui. Toward safer lithium metal batteries: a review. Energy Materials, 2023, 3(5): 300043 DOI:10.20517/energymater.2023.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen X,Shi P,Zhang Q.How does external pressure shape Li dendrites in Li metal batteries?.Adv Energy Mater2021;11:2003416

[2]

Lin D,Chen W.Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon.Nano Lett2017;17:3731-7

[3]

Kim US,Kim C.Effect of electrode configuration on the thermal behavior of a lithium-polymer battery.J Power Sources2008;180:909-16

[4]

Xu G,Wang C.The formation/decomposition equilibrium of Lih and its contribution on anode failure in practical lithium metal batteries.Angew Chem Int Ed2021;60:7770-6

[5]

Kazyak E,Lee K.Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batteries with operando 3D microscopy.Matter2022;5:3912-34

[6]

Dollé M,Beaudoin B,Tarascon J.Live scanning electron microscope observations of dendritic growth in lithium/polymer cells.Electrochem Solid-State Lett2002;5:A286

[7]

Xu X,Kapitanova OO,Sun J.Electro-chemo-mechanical failure of solid electrolytes induced by growth of internal lithium filaments.Adv Mater2022;34:e2207232

[8]

Gao X,Han D.Thermodynamic understanding of Li-dendrite formation.Joule2020;4:1864-79

[9]

Hong S,Lim S.Surface characterization of emulsified lithium powder electrode.Electrochim Acta2004;50:535-9

[10]

Xiao Y,Xu L,Huang J.Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries.Energy Mater2022;1:100013

[11]

Chazalviel J.Electrochemical aspects of the generation of ramified metallic electrodeposits.Phys Rev A1990;42:7355

[12]

Khurana R,Archer LA.Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.J Am Chem Soc2014;136:7395-402

[13]

Zhang C,Ma Z.Combined micro-proppant and supercritical carbon dioxide (SC-CO2) fracturing in shale gas reservoirs: a review.Fuel2021;305:121431

[14]

Bai P,Brushett FR.Transition of lithium growth mechanisms in liquid electrolytes.Energy Environ Sci2016;9:3221-9

[15]

Arakawa M,Nemoto Y,Yamaki J.Lithium electrode cycleability and morphology dependence on current density.J Power Sources1993;43:27-35

[16]

Chen L,Ji X,Hou S.High-energy Li metal battery with lithiated host.Joule2019;3:732-44

[17]

Aryanfar A,Colussi AJ.Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries.Phys Chem Chem Phys2014;16:24965-70

[18]

Qin K,Mohammadiroudbari M.Strategies in structure and electrolyte design for high-performance lithium metal batteries.Adv Funct Mater2021;31:2009694

[19]

Wood KN,Dasgupta NP.Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior.ACS Energy Lett2017;2:664-72

[20]

Wang Q,Shen Y.Confronting the challenges in lithium anodes for lithium metal batteries.Adv Sci2021;8:e2101111 PMCID:PMC8425877

[21]

Lu D,Lozano T.Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes.Adv Energy Mater2015;5:1400993

[22]

Cao W,Zhou K.Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization.Nano Energy2022;95:106983

[23]

Ye H,Yao H.Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries.Angew Chem Int Ed2019;131:1106-11

[24]

Li X,Ren X.Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives.Adv Energy Mater2018;8:1703022

[25]

Ko J.Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries?.Ceram Int2019;45:30-49

[26]

Monroe C.The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces.J Electrochem Soc2005;152:A396

[27]

Zhang X,Tang S,Liu X.Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface.Nano Lett2020;20:2871-8

[28]

Bi Z.Solidification for solid-state lithium batteries with high energy density and long cycle life.Energy Mater2022;2:200011

[29]

Zheng ZJ,Guo ZP.Recent progress in designing stable composite lithium anodes with improved wettability.Adv Sci2020;7:2002212 PMCID:PMC7675197

[30]

Huo H,Zhao N.Dynamics of the garnet/Li interface for dendrite-free solid-state batteries.ACS Energy Lett2020;5:2156-64

[31]

Zhu P,Dirican M.Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries.J Mater Chem A2018;6:4279-85

[32]

Tu Z,Lu Y.Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries.Adv Energy Mater2014;4:1300654

[33]

Zhou D,He Y.SiO 2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life.Adv Energy Mater2016;6:1502214

[34]

Tikekar MD,Tu Z.Design principles for electrolytes and interfaces for stable lithium-metal batteries.Nat Energy2016;1:16114

[35]

Pan Q,Qi H,Li CY.Hybrid electrolytes with controlled network structures for lithium metal batteries.Adv Mater2015;27:5995-6001

[36]

Zhao Y,Peng G.A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries.J Power Sources2016;301:47-53

[37]

Chen B,Chen X.A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery.Electrochim Acta2016;210:905-14

[38]

Zhao Y,Chen S.A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries.Solid State Ion2016;295:65-71

[39]

Zhou W,Li Y,Manthiram A.Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte.J Am Chem Soc2016;138:9385-8

[40]

Lin D,Liu Y.High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide).Nano Lett2016;16:459-65

[41]

Wang W,Fici AJ,Kieffer J.Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles.J Phys Chem C2017;121:2563-73

[42]

Liu W,Sun J.Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.Nano Lett2015;15:2740-5

[43]

Liu W,Sun J,Cui Y.Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires.ACS Nano2016;10:11407-13

[44]

Fu KK,Dai J.Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.Proc Natl Acad Sci USA2016;113:7094-9 PMCID:PMC4932948

[45]

Hagen M,Althues H.Lithium-sulphur batteries-binder free carbon nanotubes electrode examined with various electrolytes.J Power Sources2012;213:239-48

[46]

Wang Q,Wu X,Yang J.A shuttle effect free lithium sulfur battery based on a hybrid electrolyte.Phys Chem Chem Phys2014;16:21225-9

[47]

Wang L,Xia Y.A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte.Energy Environ Sci2015;8:1551-8

[48]

Yu X,Zhao F.Hybrid lithium-sulfur batteries with a solid electrolyte membrane and lithium polysulfide catholyte.ACS Appl Mater Interfaces2015;7:16625-31

[49]

Busche MR,Leichtweiss T.Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts.Nat Chem2016;8:426-34

[50]

Tsai CL,Chandran CV.Li7La3Zr2O12 interface modification for Li dendrite prevention.ACS Appl Mater Interfaces2016;8:10617-26

[51]

Cai M,Su J.In situ lithiophilic layer from H+/Li+ exchange on garnet surface for the stable lithium-solid electrolyte interface.ACS Appl Mater Interfaces2019;11:35030-8

[52]

Shen K,Bi X.Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries.Adv Energy Mater2019;9:1900260

[53]

Sheng O,Ju Z.In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by Cryo-TEM.Adv Mater2020;32:e2000223

[54]

Aurbach D,Ben-zion M.The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency.J Electroanal Chem1992;339:451-71

[55]

Shiraishi S,Takehara Z.Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution-deposition cycles.J Electrochem Soc1999;146:1633

[56]

Zhang SS.Role of LiNO3 in rechargeable lithium/sulfur battery.Electrochim Acta2012;70:344-8

[57]

Vega JA,Kohl PA.Electrochemical comparison and deposition of lithium and potassium from phosphonium- and ammonium-TFSI ionic liquids.J Electrochem Soc2009;156:A253

[58]

Morita M,Matsuda Y.Ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives.Electrochim Acta1992;37:119-23

[59]

Zhang X,Chen X,Zhang Q.Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries.Adv Funct Mater2017;27:1605989

[60]

Stark JK,Kohl PA.Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery.J Electrochem Soc2011;158:A1100

[61]

Han X,Fu KK.Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nat Mater2017;16:572-9

[62]

van den Broek J, Afyon S, Rupp JLM. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors.Adv Energy Mater2016;6:1600736

[63]

Luo W,Zhu Y.Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte.J Am Chem Soc2016;138:12258-62

[64]

Wang C,Liu B.Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes.Nano Lett2017;17:565-71

[65]

Xiao Z,Wang X.Dual-layered 3D composite skeleton enables spatially ordered lithium plating/stripping for lithium metal batteries with ultra-low N/P ratios.ACS Appl Energy Mater2022;5:14071-80

[66]

Sun B,Huang Z.Robust current collector promoting the li metal anode cycling with appropriate interspaces.J Electrochem Soc2018;165:A2026

[67]

Li C,Zhu Y.Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries.Energy Mater2022;1:100017

[68]

Xiong X,Zhou Q.Constructing a lithiophilic polyaniline coating via in situ polymerization for dendrite-free lithium metal anode.Nano Res2023;16:8448-56

[69]

Wang T,Wang Y.High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries.Adv Funct Mater2021;31:2001973

[70]

Ji X,Prendiville DG,Liu X.Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition.Nano Today2012;7:10-20

[71]

Jin C,Luo J.3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries.Nano Energy2017;37:177-86

[72]

Zhang R,Zhao CZ.Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth.Adv Mater2016;28:2155-62

[73]

Lu LL,Yang JN.Free-standing copper nanowire network current collector for improving lithium anode performance.Nano Lett2016;16:4431-7

[74]

Yang CP,Zhang SF,Guo YG.Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nat Commun2015;6:8058 PMCID:PMC4560781

[75]

Yan K,Lee H.Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth.Nat Energy2016;1:16010

[76]

Zhang Y,Hitz E.A carbon-based 3D current collector with surface protection for Li metal anode.Nano Res2017;10:1356-65

[77]

Chen Y,Li X.Li metal deposition and stripping in a solid-state battery via Coble creep.Nature2020;578:251-5

[78]

Herring C.Diffusional viscosity of a polycrystalline solid.J Appl Phys1950;21:437-45

[79]

Liu L,Li J.Free-Standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes.Joule2017;1:563-75

[80]

Liu W,Pei A.Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement.J Am Chem Soc2016;138:15443-50

[81]

Zhang Y,Wang C.High-capacity, low-tortuosity, and channel-guided lithium metal anode.Proc Natl Acad Sci USA2017;114:3584-9

[82]

Liu Y,Liang Z,Yan K.Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode.Nat Commun2016;7:10992 PMCID:PMC4802050

[83]

Go W,Park J.Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes.Nano Lett2019;19:1504-11

[84]

Lin D,Liang Z.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nat Nanotechnol2016;11:626-32

[85]

Liao C,Han L.A flame retardant sandwiched separator coated with ammonium polyphosphate wrapped by SiO2 on commercial polyolefin for high performance safety lithium metal batteries.Appl Mater Today2020;21:100793

[86]

Xu L,Wang W,Wang Z.Polymeric one-side conductive janus separator with preferably oriented pores for enhancing lithium metal battery safety.J Mater Chem A2021;9:3409-17

[87]

Liao C,Wang J.Magnetron sputtering deposition of silicon nitride on polyimide separator for high-temperature lithium-ion batteries.J Energy Chem2021;56:1-10

[88]

Kim S,Sohn E,Park IJ.High discharge energy density and efficiency in newly designed PVDF@SiO2-PVDF composites for energy capacitors.ACS Appl Energy Mater2020;3:8937-45

[89]

Shayapat J,Park JS.Electrospun polyimide-composite separator for lithium-ion batteries.Electrochim Acta2015;170:110-21

[90]

Kang G.Application and modification of poly(vinylidene fluoride) (PVDF) membranes - a review.J Membr Sci2014;463:145-65

[91]

Wang W,Yuan Y.Nano architectured halloysite nanotubes enable advanced composite separator for safe lithium metal batteries.Chem Eng J2023;451:138496

[92]

Wang W,Wang J.Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDF-HFP separator.ACS Appl Energy Mater2019;2:4167-74

[93]

Xiao W,Gong Y,Yan C.Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries.J Membr Sci2015;487:221-8

PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

/