Fundamentals and perspectives of electrolyte additives for non-aqueous Na-ion batteries

Vadim Shipitsyn , Nicholas Antrasian , Vijayendra Soni , Linqin Mu , Lin Ma

Energy Materials ›› 2023, Vol. 3 ›› Issue (5) : 300038

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (5) :300038 DOI: 10.20517/energymater.2023.22
Review

Fundamentals and perspectives of electrolyte additives for non-aqueous Na-ion batteries

Author information +
History +
PDF

Abstract

Despite extensive research efforts to develop non-aqueous sodium-ion batteries (SIBs) as alternatives to lithium-based energy storage battery systems, their performance is still hindered by electrode-electrolyte side reactions. As a feasible strategy, the engineering of electrolyte additives has been regarded as one of the effective ways to address these critical problems. In this review, we provide a comprehensive overview of recent progress in electrolyte additives for non-aqueous SIBs. We classify the additives based on their effects on specific electrode materials and discuss the functions and mechanisms of each additive category. Finally, we propose future directions for electrolyte additive research, including studies on additives for improving cell performance under extreme conditions, optimizing electrolyte additive combinations, understanding the effect of additives on cathode-anode interactions, and understanding the characteristics of electrolyte additives.

Keywords

Non-aqueous Na-ion batteries / electrolyte additives / solid electrolyte interphase / cathode electrolyte interphase / cell lifetime

Cite this article

Download citation ▾
Vadim Shipitsyn, Nicholas Antrasian, Vijayendra Soni, Linqin Mu, Lin Ma. Fundamentals and perspectives of electrolyte additives for non-aqueous Na-ion batteries. Energy Materials, 2023, 3(5): 300038 DOI:10.20517/energymater.2023.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yabuuchi N,Dahbi M.Research development on sodium-ion batteries.Chem Rev2014;114:11636-82

[2]

Vaalma C,Weil M.A cost and resource analysis of sodium-ion batteries.Nat Rev Mater2018;3:18013

[3]

Delmas C.Sodium and sodium-ion batteries: 50 years of research.Adv Energy Mater2018;8:1703137

[4]

Hwang JY,Sun YK.Sodium-ion batteries: present and future.Chem Soc Rev2017;46:3529-614

[5]

Chayambuka K,Danilov DL.Sodium-ion battery materials and electrochemical properties reviewed.Adv Energy Mater2018;8:1800079

[6]

Fang C,Zhang W.Routes to high energy cathodes of sodium-ion batteries.Adv Energy Mater2016;6:1501727

[7]

Xiao J,Tang K.Recent progress of emerging cathode materials for sodium ion batteries.Mater Chem Front2021;5:3735-64

[8]

Xiang X,Chen J.Recent advances and prospects of cathode materials for sodium-ion batteries.Adv Mater2015;27:5343-64

[9]

Bommier C.Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes.Small2018;14:e1703576

[10]

Song J,Lin Y,Li X.Interphases in sodium-ion batteries.Adv Energy Mater2018;8:1703082

[11]

Ponrouch A,Boschin A,Johansson P.Non-aqueous electrolytes for sodium-ion batteries.J Mater Chem A2015;3:22-42

[12]

Lao M,Luo W,Sun W.Alloy-based anode materials toward advanced sodium-ion batteries.Adv Mater2017;29:1700622

[13]

Yu P,Wu F.Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review.Rare Met2020;39:1019-33

[14]

Chang G,Dong L.A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries.J Mater Chem A2020;8:4996-5048

[15]

Goodenough JB.Evolution of strategies for modern rechargeable batteries.Acc Chem Res2013;46:1053-61

[16]

Xu K.Electrolytes and interphases in Li-ion batteries and beyond.Chem Rev2014;114:11503-618

[17]

Jin Y,Le PML.Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases.ACS Energy Lett2020;5:3212-20

[18]

Mu L,Kou R.Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials.Adv Energy Mater2018;8:1801975

[19]

Han B,Zhang Z.Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy.Nat Commun2021;12:3066 PMCID:PMC8144392

[20]

Park J,Son SB.Effect of electrolytes on the cathode-electrolyte interfacial stability of Fe-based layered cathodes for sodium-ion batteries.J Electrochem Soc2022;169:030536

[21]

Moeez I,Chang W,Chung KY.Artificial cathode electrolyte interphase by functional additives toward long-life sodium-ion batteries.Chem Eng J2021;425:130547

[22]

Bodenes L,Monconduit L.The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries.J Power Sources2015;273:14-24

[23]

Zhang X,Guo S.Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries.Adv Mater2019;31:e1807770

[24]

Fondard J,Courrèges C,Ponrouch A.SEI composition on hard carbon in Na-ion batteries after long cycling: influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF).J Electrochem Soc2020;167:070526

[25]

Ghigna P.Operando x-ray absorption spectroscopy on battery materials: a review of recent developments.J Phys Energy2021;3:032006

[26]

Chen M,Dou SX.Understanding challenges of cathode materials for sodium-ion batteries using synchrotron-based X-ray absorption spectroscopy.Batteries Supercaps2019;2:842-51

[27]

Wang PF,Piao N.Both cationic and anionic redox chemistry in a P2-type sodium layered oxide.Nano Energy2020;69:104474

[28]

Huang J,Du X.Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries.Energy Environ Sci2019;12:1550-7

[29]

Hirsh HS,Shen A.Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life.Energy Storage Mater2021;42:78-87

[30]

Song H,Wang C.Multi-ions electrolyte enabled high performance voltage tailorable room-temperature Ca-metal batteries.Adv Energy Mater2021;11:2003685

[31]

Jin Y,Le PML.Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases.ACS Energy Lett2020;5:3212-20

[32]

Andre D,Steiner K,Soczka-Guth T.Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation.J Power Sources2011;196:5334-41

[33]

Walther F,Fuchs T.Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry.Chem Mater2019;31:3745-55

[34]

Schwieters T,Mense M,Nowak S.Lithium loss in the solid electrolyte interphase: lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy.J Power Sources2017;356:47-55

[35]

Kim H,Ding Z.Recent progress in electrode materials for sodium-ion batteries.Adv Energy Mater2016;6:1600943

[36]

Dou X,Saurel D.Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry.Mater Today2019;23:87-104

[37]

Zhao LF,Lai WH.Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts.Adv Energy Mater2021;11:2002704

[38]

Komaba S,Ishikawa T.Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries.Adv Funct Mater2011;21:3859-67

[39]

Komaba S,Yabuuchi N,Ito A.Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries.ACS Appl Mater Interfaces2011;3:4165-8

[40]

Dahbi M,Yabuuchi N.Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries.ChemElectroChem2016;3:1856-67

[41]

Tang K,White RJ.Hollow carbon nanospheres with superior rate capability for sodium-based batteries.Adv Energy Mater2012;2:873-7

[42]

Luo W,Bommier C.Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries.J Mater Chem A2013;1:10662-6

[43]

Zhou X.Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries.ChemElectroChem2014;1:83-6

[44]

Xie H,Wang Z.Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries.J Mater Chem A2020;8:3606-12

[45]

Bommier C,Gao WY,Ma S.Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements.Carbon2014;76:165-74

[46]

Ponrouch A,Palacín MR.High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte.Electrochem Commun2013;27:85-8

[47]

Zhu YE,Chen YN,Wei J.Hard carbon derived from corn straw piths as anode materials for sodium ion batteries.Ionics2018;24:1075-81

[48]

Jin J,Shi ZQ,Chong CB.Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries.J Power Sources2014;272:800-7

[49]

Yang T,Wang M.A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries.Adv Mater2016;28:539-45

[50]

Cao Y,Sushko ML.Sodium ion insertion in hollow carbon nanowires for battery applications.Nano Lett2012;12:3783-7

[51]

Lotfabad EM,Cui K.High-density sodium and lithium ion battery anodes from banana peels.ACS Nano2014;8:7115-29

[52]

Jiang X,Zeng Z.A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries.iScience2018;10:114-22 PMCID:PMC6279964

[53]

Li Y,Wu X.Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries.J Mater Chem A2015;3:71-7

[54]

Li W,Yang Z.Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers.Nanoscale2014;6:693-8

[55]

Ding J,Li Z.Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes.ACS Nano2013;7:11004-15

[56]

Liu X,Zeng Z.High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries.ACS Appl Mater Interfaces2018;10:38141-50

[57]

Li Y,Titirici MM,Huang X.Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries.Adv Energy Mater2016;6:1600659

[58]

Li Y,Meng Q.Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance.Adv Energy Mater2019;9:1902852

[59]

Zhang Q,Li X.Comparative study of 1,3-propane sultone, prop-1-ene-1,3-sultone and ethylene sulfate as film-forming additives for sodium ion batteries.J Power Sources2022;541:231726

[60]

Shao Y,Wang W.Surface-driven sodium ion energy storage in nanocellular carbon foams.Nano Lett2013;13:3909-14

[61]

Feng J,Ci L.Nonflammable electrolyte for safer non-aqueous sodium batteries.J Mater Chem A2015;3:14539-44

[62]

Luo W,Jian Z.Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent.ACS Appl Mater Interfaces2015;7:2626-31

[63]

Kim DH,Lee H.Comparative study of fluoroethylene carbonate and succinic anhydride as electrolyte additive for hard carbon anodes of Na-ion batteries.J Power Sources2019;423:137-43

[64]

Bai P,He Y.Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries.Energy Stor Mater2020;25:324-33

[65]

Che H,Wang H.Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery.Electrochem Commun2017;83:20-3

[66]

Wang J,Sodeyama K.Fire-extinguishing organic electrolytes for safe batteries.Nat Energy2018;3:22-9

[67]

Zhang J,Lv W.Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase.Energy Environ Sci2017;10:370-6

[68]

Cometto C,Mariyappan S.Means of using cyclic voltammetry to rapidly design a stable DMC-based electrolyte for Na-ion batteries.J Electrochem Soc2019;166:A3723-30

[69]

Yan G,Foix D.A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries.Adv Energy Mater2019;9:1901431

[70]

Che H,Wang H.Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives.J Power Sources2018;407:173-9

[71]

Dugas R,Gachot G,Palacin MR.Na reactivity toward carbonate-based electrolytes: the effect of FEC as additive.J Electrochem Soc2016;163:A2333-9

[72]

Liu Q,Wu B,Gai L.Density functional theory research into the reduction mechanism for the solvent/additive in a sodium-ion battery.ChemSusChem2017;10:786-96

[73]

Wang E,Yin YX.Manipulating electrode/electrolyte interphases of sodium-ion batteries: strategies and perspectives.ACS Materials Lett2021;3:18-41

[74]

Hu S,Qian Y.Improved high-temperature performance of LiNi0.5Co0.2Mn0.3O2/artificial graphite lithium ion pouch cells by difluoroethylene carbonate.J Energy Storage2023;57:106266

[75]

Ma L,Petibon R.A guide to ethylene carbonate-free electrolyte making for Li-ion cells.J Electrochem Soc2017;164:A5008-18

[76]

Yu Z,Chen Y.Tuning fluorination of linear carbonate for lithium-ion batteries.J Electrochem Soc2022;169:040555

[77]

Lee H,Choi S.SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries.Electrochem Commun2007;9:801-6

[78]

Leggesse EG.Theoretical study of the reductive decomposition of 1,3-propane sultone: SEI forming additive in lithium-ion batteries.RSC Adv2012;2:5439-46

[79]

Liu Q,Mu D.Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery.Carbon Energy2022;4:458-79

[80]

Xia L,Liu Z.A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries.J Power Sources2015;278:190-6

[81]

Ji W,Zhang X.A redox-active organic salt for safer Na-ion batteries.Nano Energy2020;72:104705 PMCID:PMC8186495

[82]

Zheng X,Hu C.Toward a stable sodium metal anode in carbonate electrolyte: a compact, inorganic alloy interface.J Phys Chem Lett2019;10:707-14

[83]

Wang H,Matios E.Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate.Angew Chem2018;130:7860-3

[84]

Fang W,Zheng Y.A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery.J Power Sources2020;455:227956

[85]

Wang S,Sun Z.Stable cycling of Na metal anodes in a carbonate electrolyte.Chem Commun2019;55:14375-8

[86]

Jiang Z,Yang C.Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode.Nano Lett2019;19:8780-6

[87]

Li P,Huang X,Xie J.Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries.Nano Energy2021;89:106396

[88]

Li P,Jiang Z.High-rate sodium metal batteries enabled by trifluormethylfullerene additive.Nano Res2022;15:7172-9

[89]

Jiang R,Liu Y.An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery.Energy Stor Mater2021;42:370-9

[90]

Kreissl JJA,Tkachenko BA,Janek J.Incorporating diamondoids as electrolyte additive in the sodium metal anode to mitigate dendrite growth.ChemSusChem2020;13:2661-70 PMCID:PMC7318660

[91]

Zhu M,Liu X.Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer.Angew Chem2020;132:6658-62

[92]

Zhu M,Yu F.Stable sodium metal anode enabled by an interface protection layer rich in organic sulfide salt.Nano Lett2021;21:619-27

[93]

Zhu M,Zhang Y.An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte.Energy Storage Materials2021;42:145-53

[94]

Rodriguez R,Nathan SS.In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate.ACS Energy Lett2017;2:2051-7

[95]

Shiraz MHA,Liu J.High-performance sodium-selenium batteries enabled by microporous carbon/selenium cathode and fluoroethylene carbonate electrolyte additive.J Power Sources2020;453:227855

[96]

Han M,Ma T,Tao Z.In situ atomic force microscopy study of nano-micro sodium deposition in ester-based electrolytes.Chem Commun2018;54:2381-4

[97]

Wang Q,Lv X.Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface.J Mater Chem A2019;7:24857-67

[98]

Pan K,Zhong F,Yang H.Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries.ACS Appl Mater Interfaces2018;10:39651-60

[99]

Fan JJ,Shi CG.Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries.Adv Funct Mater2021;31:2010500

[100]

Feng J,Xiong S.Biphenyl as overcharge protection additive for nonaqueous sodium batteries.RSC Adv2015;5:96649-52

[101]

Baggetto L,Górka J,Veith GM.AlSb thin films as negative electrodes for Li-ion and Na-ion batteries.J Power Sources2013;243:699-705

[102]

Baggetto L,Browning JF.Germanium as negative electrode material for sodium-ion batteries.Electrochem Commun2013;34:41-4

[103]

Baggetto L,Unocic RR,Veith GM.Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries.J Mater Chem A2013;1:11163-9

[104]

Darwiche A,Sougrati MT,Stievano L.Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism.J Am Chem Soc2012;134:20805-11

[105]

Ma W,Gao H,Peng Z.Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries.Nano Energy2018;54:349-59

[106]

Kim IT,Manthiram A.Effect of TiC addition on SnSb-C composite anodes for sodium-ion batteries.J Power Sources2014;269:848-54

[107]

Kim IT,Manthiram A.High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries.Phys Chem Chem Phys2014;16:12884-9

[108]

Kim IT,Manthiram A.Cu6Sn5-TiC-C nanocomposite anodes for high-performance sodium-ion batteries.J Power Sources2015;281:11-7

[109]

Sadan MK,Kim HH.Effect of sodium salts on the cycling performance of tin anode in sodium ion batteries.Ionics2018;24:753-61

[110]

Qian J,Wu L,Ai X.High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.Chem Commun2012;48:7070-2

[111]

Ji L,Shao Y.Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage.Adv Mater2014;26:2901-8

[112]

Zhang J,Yang J.Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage.Chem Mater2020;32:448-58

[113]

Yabuuchi N,Ishikawa T.Phosphorus electrodes in sodium cells: small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent.ChemElectroChem2014;1:580-9

[114]

Dahbi M,Fukunishi M.Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface.Chem Mater2016;28:1625-35

[115]

Li M,Moyer K.Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.Nanoscale2018;10:10443-9

[116]

Song J,Fang K,Wang R.NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation.J Colloid Interface Sci2023;630:443-52

[117]

Capone I,Naylor AJ,Pasta M.Effect of the particle-size distribution on the electrochemical performance of a red phosphorus-carbon composite anode for sodium-ion batteries.Energy Fuels2019;33:4651-8 PMCID:PMC7011731

[118]

Jian Z,Liu P.Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries.Chem Commun2014;50:1215-7

[119]

Hu Z,Zhang K.MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries.Angew Chem Int Ed Engl2014;53:12794-8

[120]

Xiong H,Balasubramanian M,Rajh T.Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries.J Phys Chem Lett2011;2:2560-5

[121]

Dynarowska M,Leszczynska M,Krok F.Ionic conductivity and structural properties of Na2Ti3O7 anode material.Solid State Ionics2017;301:35-42

[122]

Zhao L,Hu YS.Disodium Terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery.Adv Energy Mater2012;2:962-5

[123]

Armand M,MacFarlane DR,Scrosati B.Ionic-liquid materials for the electrochemical challenges of the future.Nat Mater2009;8:621-9

[124]

López-herraiz M,Carretero-gonzález J,Rojo T.Oligomeric-schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers.Energy Environ Sci2015;8:3233-41

[125]

Castillo-Martínez E,Armand M.Polymeric schiff bases as low-voltage redox centers for sodium-ion batteries.Angew Chem Int Ed Engl2014;53:5341-5

[126]

Huang Y,Li L,Wu F.Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application.Adv Mater2019;31:e1808393

[127]

Kucinskis G,Sarakovskis A,Hodakovska J.Electrochemical performance of Na2FeP2O7/C cathode for sodium-ion batteries in electrolyte with fluoroethylene carbonate additive.J Alloys Compd2022;895:162656

[128]

Lee Y,Kim H,Choi NS.Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries.J Power Sources2016;320:49-58

[129]

Cheng Z,Dong Q.Fluoroethylene carbonate as an additive for sodium-ion batteries: effect on the sodium cathode.Acta Phys-Chim Sin2019;35:868-75

[130]

Wu S,Kun N.Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries.Adv Energy Mater2020;11:2002737

[131]

Shi J,Wan Y.Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive.J Energy Chem2021;57:650-5

[132]

Yang Z,Lai WH.Fire-retardant, stable-cycling and high-safety sodium ion battery.Angew Chem2021;133:27292-300

[133]

Law M,Balaya P.Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery.J Power Sources2017;359:277-84

[134]

Farhat D,Eriksson H,Lemordant D.Towards high-voltage Li-ion batteries: reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes.Electrochimica Acta2018;281:299-311

[135]

Song X,Deng Y.The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries.Electrochimica Acta2018;281:370-7

[136]

Tong B,Wan H.Sulfur-containing compounds as electrolyte additives for lithium-ion batteries.InfoMat2021;3:1364-92

[137]

Xie D,Wu Y,Tang Y.A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life.Adv Funct Mater2020;30:1906770

[138]

Welch J,van Ekeren W,Naylor AJ.Optimization of sodium bis(oxalato)borate (NaBOB) in triethyl phosphate (TEP) by electrolyte additives.J Electrochem Soc2022;169:120523

[139]

Nimkar A,Malchik F.Unraveling the role of fluorinated alkyl carbonate additives in improving cathode performance in sodium-ion batteries.ACS Appl Mater Interfaces2021;13:46478-87

[140]

Zuo W,Liu X.The stability of P2-layered sodium transition metal oxides in ambient atmospheres.Nat Commun2020;11:3544 PMCID:PMC7363866

[141]

Chen L,Song T,Dancer C.Improved lifetime of Na-ion batteries with a water-scavenging electrolyte additive.Front Energy Res2022;10:925430

[142]

Yu Y,Yang X,Li L.Non-flammable organic electrolyte for sodium-ion batteries.Electrochem Commun2020;110:106635

[143]

Hueso KB,Rojo T.High temperature sodium batteries: status, challenges and future trends.Energy Environ Sci2013;6:734-49

[144]

Feng J,Li L,Xiong S.Ether-based nonflammable electrolyte for room temperature sodium battery.J Power Sources2015;284:222-6

[145]

Zeng G,Gu C.A nonflammable fluorinated carbonate electrolyte for sodium-ion batteries.Acta Phys-Chim Sin2020;36:1905006-0

[146]

Jia H,Xu Y.Is nonflammability of electrolyte overrated in the overall safety performance of lithium ion batteries?.Advanced Energy Materials2023;13:2203144

[147]

Ma L,Dahn JR.Ternary electrolyte additive mixtures for Li-ion cells that promote long lifetime and less reactivity with charged electrodes at elevated temperatures.J Electrochem Soc2015;162:A1170-4

[148]

Ma L,Xia X.The impact of vinylene carbonate, fluoroethylene carbonate and vinyl ethylene carbonate electrolyte additives on electrode/electrolyte reactivity studied using accelerating rate calorimetry.J Electrochem Soc2014;161:A1495-8

[149]

Xiong DJ,Nie M,Xia J.Interactions between positive and negative electrodes in Li-ion cells operated at high temperature and high voltage.J Electrochem Soc2016;163:A546-51

[150]

Petibon R,Nelson KJ,Xia J.Study of electrolyte components in Li ion cells using liquid-liquid extraction and gas chromatography coupled with mass spectrometry.J Electrochem Soc2014;161:A1167-72

[151]

Petibon R,Aiken CP.Studies of the capacity fade mechanisms of LiCoO2/Si-alloy: graphite cells.J Electrochem Soc2016;163:A1146-56

PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

/