Influences of deposition conditions on atomic layer deposition films for enhanced performance in perovskite solar cells

Bohao Yu , Jiawen Zhang , Yuzhao Yang , Dingshan Yu , Yaohua Mai , Xudong Chen

Energy Materials ›› 2024, Vol. 4 ›› Issue (4) : 400045

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (4) :400045 DOI: 10.20517/energymater.2023.150
Mini Review

Influences of deposition conditions on atomic layer deposition films for enhanced performance in perovskite solar cells

Author information +
History +
PDF

Abstract

Atomic layer deposition (ALD) is a key technology for fabricating functional layers in perovskite solar cells, as it can deposit pinhole-free films with atomic-level thickness and tunable composition on high-aspect-ratio surfaces. Various deposition conditions have significant effects on the growth, physical, and chemical properties of ALD films, which, in turn, critically influences the performance of associated devices. Here, we review the reaction mechanisms underlying ALD and summarize how variables, such as precursors, deposition temperatures, and substrates, impinge upon the quality of ALD films and the related devices. We emphasize the role of substrate in determining the nucleation and growth behavior of ALD films, which has been overlooked in previous reviews. Finally, we highlight the potential application of ALD in efficient perovskite solar cells in terms of carrier transport, encapsulated, and buffer layers, especially for tandem cells.

Keywords

Atomic layer deposition / substrate / perovskite solar cells / tandem solar cells

Cite this article

Download citation ▾
Bohao Yu, Jiawen Zhang, Yuzhao Yang, Dingshan Yu, Yaohua Mai, Xudong Chen. Influences of deposition conditions on atomic layer deposition films for enhanced performance in perovskite solar cells. Energy Materials, 2024, 4(4): 400045 DOI:10.20517/energymater.2023.150

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Suntola T.Atomic layer epitaxy.Mater Sci Rep1989;4:261-312

[2]

Santinacci L.Atomic layer deposition: an efficient tool for corrosion protection.Curr Opin Colloid Interface Sci2023;63:101674

[3]

O’Neill BJ,Lee J.Catalyst design with atomic layer deposition.ACS Catal2015;5:1804-25

[4]

Bakke JR,Brennan TP.Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition.Nanoscale2011;3:3482-508

[5]

Hossain MA,Cui X.Atomic layer deposition enabling higher efficiency solar cells: a review.Nano Mater Sci2020;2:204-26

[6]

Raiford JA,Bent SF.Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells.Energy Environ Sci2020;13:1997-2023

[7]

Xing Z,Hu T.Atomic layer deposition of metal oxides in perovskite solar cells: present and future.Small Methods2020;4:2000588

[8]

Sinha S,Pawar PS,Heo J.A review on atomic layer deposited buffer layers for Cu(In,Ga)Se2(CIGS) thin film solar cells: past, present, and future.Solar Energy2020;209:515-37

[9]

Eperon GE,Menelaou C,Herz LM.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ Sci2014;7:982-8

[10]

De Wolf S,Moon SJ.Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance.J Phys Chem Lett2014;5:1035-9

[11]

Saliba M,Domanski K.Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.Science2016;354:206-9

[12]

George SM.Atomic layer deposition: an overview.Chem Rev2010;110:111-31

[13]

Yang Y,Ma S,Zhu L.Advances of electron transport materials in perovskite solar cells: synthesis and application.Prog Chem2021;33:281-302

[14]

Lobe S,Uhlenbruck S.Physical vapor deposition in solid-state battery development: from materials to devices.Adv Sci2021;8:e2002044 PMCID:PMC8188201

[15]

Wang M.Film fabrication of perovskites and their derivatives for photovoltaic applications via chemical vapor deposition.ACS Appl Energy Mater2022;5:5434-48

[16]

Brinkmann KO,Riedl T.Atomic layer deposition of functional layers in planar perovskite solar cells.Solar RRL2020;4:1900332

[17]

Gordon RG,Kim E.A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches.Chem Vap Depos2003;9:73-8

[18]

Puurunen RL.Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process.J Appl Phys2005;97:121301

[19]

Putkonen M.Organometallic precursors for atomic layer deposition. In: Precursor chemistry of advanced materials, Fischer RA, editor. Berlin: Springer; 2005. pp. 125-45.

[20]

Richey NE,Bent SF.Understanding chemical and physical mechanisms in atomic layer deposition.J Chem Phys2020;152:040902

[21]

Zhao R,Zhu J.Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells.Nanoscale Adv2021;3:2305-15 PMCID:PMC9419234

[22]

Yu B,Yang Y.Impermeable atomic layer deposition for sputtering buffer layer in efficient semi-transparent and tandem solar cells via activating unreactive substrate.Adv Mater2023;35:e2202447

[23]

Zhang Y,Mbumba MT.Research progress of buffer layer and encapsulation layer prepared by atomic layer deposition to improve the stability of perovskite solar cells.Solar RRL2022;6:2200823

[24]

Lee KM,Wang KH.Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics.Solar Energy2015;120:117-22

[25]

Matsui T,Hermle M.Atomic-layer-deposited TiOx nanolayers function as efficient hole-selective passivating contacts in silicon solar cells.ACS Appl Mater Interfaces2020;12:49777-85

[26]

Correa Baena JP,Tress W.Highly efficient planar perovskite solar cells through band alignment engineering.Energy Environ Sci2015;8:2928-34

[27]

Zardetto V,Lifka H.Surface fluorination of ALD TiO2 electron transport layer for efficient planar perovskite solar cells.Adv Mater Inter2018;5:1701456

[28]

Jin TY,Li YQ.High-performance flexible perovskite solar cells enabled by low-temperature ALD-assisted surface passivation.Adv Opt Mater2018;6:1801153

[29]

Choudhury D,Sarkar SK.Self limiting atomic layer deposition of Al2O3 on perovskite surfaces: a reality?.Nanoscale2016;8:7459-65

[30]

Kuang Y,van Gils R.Low-temperature plasma-assisted atomic-layer-deposited SnO2 as an electron transport layer in planar perovskite solar cells.ACS Appl Mater Interfaces2018;10:30367-78 PMCID:PMC6137428

[31]

Lee Y,Seo G.Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer.Adv Sci2018;5:1800130 PMCID:PMC6010698

[32]

Hu T,Pourdavoud N.Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers.Adv Mater2017;29:1606656

[33]

Ren N,Li R.50 °C low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells.Appl Phys Lett2022;121:033502

[34]

Hultqvist A,Sveinbjörnsson K.Atomic layer deposition of electron selective SnOx and ZnO films on mixed halide perovskite: compatibility and performance.ACS Appl Mater Interfaces2017;9:29707-16

[35]

Zardetto V,Perrotta A.Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges.Sustain Energy Fuels2017;1:30-55

[36]

Kruszyńska J,Ozkaya V.Atomic layer engineering of aluminum-doped zinc oxide films for efficient and stable perovskite solar cells.Adv Mater Inter2022;9:2200575

[37]

Behrendt A,Gahlmann T.Highly robust transparent and conductive gas diffusion barriers based on tin oxide.Adv Mater2015;27:5961-7

[38]

Wang H,Liu H.Effect of various oxidants on reaction mechanisms, self-limiting natures and structural characteristics of Al2O3 films grown by atomic layer deposition.Adv Mater Inter2018;5:1701248

[39]

Lee SU,Shin H.Atomic layer deposition of SnO2 using hydrogen peroxide improves the efficiency and stability of perovskite solar cells.Nanoscale2023;15:5044-52

[40]

Kim H.Characteristics and applications of plasma enhanced-atomic layer deposition.Thin Solid Films2011;519:6639-44

[41]

Kim H.Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing.J Vac Sci Technol B2003;21:2231-61

[42]

Johnson RW,Bent SF.A brief review of atomic layer deposition: from fundamentals to applications.Mater Today2014;17:236-46

[43]

Potts SE,Langereis E,van de Sanden MCM.Low temperature plasma-enhanced atomic layer deposition of metal oxide thin films.J Electrochem Soc2010;157:P66

[44]

Muñoz-Rojas D.Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics.Mater Horiz2014;1:314-20

[45]

Poodt P,Illiberi A,van Asten A.Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics.J Vac Sci Technol A2012;30:01A142

[46]

Illiberi A,Poodt P.Spatial atomic layer deposition of zinc oxide thin films.ACS Appl Mater Interfaces2012;4:268-72

[47]

Lindahl J,Wätjen JT,Törndahl T.The effect of substrate temperature on atomic layer deposited zinc tin oxide.Thin Solid Films2015;586:82-7

[48]

Chistiakova G,Wilks RG,Korte L.In-system photoelectron spectroscopy study of tin oxide layers produced from tetrakis(dimethylamino)tin by plasma enhanced atomic layer deposition.J Vac Sci Technol A2018;36:02D401

[49]

Köhnen E,Morales-Vilches AB.Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance.Sustain Energy Fuels2019;3:1995-2005

[50]

Hultqvist A,Svanström S.SnOx atomic layer deposition on bare perovskite-an investigation of initial growth dynamics, interface chemistry, and solar cell performance.ACS Appl Energy Mater2021;4:510-22 PMCID:PMC7885702

[51]

Schulze TF,Ruske F.Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder.Phys Rev B2011;83:165314

[52]

Puurunen RL.Island growth as a growth mode in atomic layer deposition: a phenomenological model.J Appl Phys2004;96:7686-95

[53]

Labbe M,Ivey DG.Growth of multiple island layers during iron oxide atomic layer deposition: an electron microscopy and spectroscopic ellipsometry investigation.J Phys Chem C2022;126:19883-94

[54]

Gilmer GH.Models of thin film growth modes.JOM1987;39:19-23

[55]

Brinkmann KO,Pourdavoud N.Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells.Nat Commun2017;8:13938 PMCID:PMC5336555

[56]

Yu X,Peng Q.Improve the stability of hybrid halide perovskite via atomic layer deposition on activated phenyl-C61 butyric acid methyl ester.ACS Appl Mater Interfaces2018;10:28948-54

[57]

Gong J,Jones BT.Nanoscale encapsulation of hybrid perovskites using hybrid atomic layer deposition.J Phys Chem Lett2022;13:4082-9

[58]

Wang W,Ding J,Li X.Improving water-resistance of inverted flexible perovskite solar cells via tailoring the top electron-selective layers.Solar Energy Mater Solar Cells2022;238:111609

[59]

Liu J,Zhao Z.Reducing damage of sputtering and improving conductivity of transparent electrodes for efficient semi-transparent perovskite solar cells.J Phys D Appl Phys2023;56:365101

[60]

Palmstrom AF,Leijtens T.Enabling flexible all-perovskite tandem solar cells.Joule2019;3:2193-204

[61]

Li W,Wang D,Chen ZK.Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition.Org Electron2018;57:60-7

[62]

Raiford JA,Palmstrom AF.Enhanced nucleation of atomic layer deposited contacts improves operational stability of perovskite solar cells in air.Adv Energy Mater2019;9:1902353

[63]

Yun HJ,Choi BJ.Nucleation and growth behavior of aluminum nitride film using thermal atomic layer deposition.Ceram Int2020;46:13372-6

[64]

Baji Z,Horváth ZE.Nucleation and growth modes of ALD ZnO.Cryst Growth Des2012;12:5615-20

[65]

Uğur A,Ay N.Growth of ultrathin Al2O3 islands on hBN particles by atomic layer deposition in a custom fluidized bed reactor using Al(CH3) 3 and H2O.Appl Surf Sci2021;537:147665

[66]

Hagen DJ,Povey IM,Pemble ME.Island coalescence during film growth: an underestimated limitation of Cu ALD.Adv Mater Inter2017;4:1700274

[67]

Wilson CA,George SM.Nucleation and growth during Al2O3 atomic layer deposition on polymers.Chem Mater2005;17:5625-34

[68]

Jur JS,Lee K,Peng Q.Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers.Langmuir2010;26:8239-44

[69]

Demelius L,Unger K,Gemmi M.Shedding light on the initial growth of ZnO during plasma-enhanced atomic layer deposition on vapor-deposited polymer thin films.Appl Surf Sci2022;604:154619

[70]

Weiß A,Kettunen S.Conversion of ALD CuO thin films into transparent conductive p-type CuI thin films.Adv Mater Inter2023;10:2201860

[71]

Zhou J,Zhao Q.Performance promotion of aluminum oxide capping layer through interface engineering for tunnel oxide passivating contacts.Solar Energy Mater Solar Cells2022;245:111865

[72]

Hagedorn S,Weyers M,Gargouri H.AlN and AlN/Al2O3 seed layers from atomic layer deposition for epitaxial growth of AlN on sapphire.J Vac Sci Technol A2019;37:020914

[73]

Lin G,Jia M.Performance enhancement of monolayer MoS2 transistors by atomic layer deposition of high- k dielectric assisted by Al2O3 seed layer.J Phys D Appl Phys2020;53:105103

[74]

Yang H,Mao H.Native oxide seeded spontaneous integration of dielectrics on exfoliated black phosphorus.ACS Appl Mater Interfaces2020;12:24411-8

[75]

Wolff CM,Stolterfoht M.Nonradiative recombination in perovskite solar cells: the role of interfaces.Adv Mater2019;31:e1902762

[76]

Xia J,Nazeeruddin MK.Efficient and stable perovskite solar cells by tailoring of interfaces.Adv Mater2023;35:e2211324

[77]

Zhao W.Advanced applications of atomic layer deposition in perovskite-based solar cells.Adv Photonics Res2021;2:2100011

[78]

Popov G,Hatanpää T.Atomic layer deposition of PbI2 thin films.Chem Mater2019;31:1101-9

[79]

Lin J,Mo H.Substrate modifications for stability improvements of flexible perovskite solar cells.Energy Technol2024;12:2300958

[80]

Xiao K,Zhang M.Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules.Science2022;376:762-7

[81]

Xiong Z,Zhou X.Constructing tin oxides interfacial layer with gradient compositions for efficient perovskite/silicon tandem solar cells with efficiency exceeding 28%.Small2024;20:e2308024

[82]

Li J,Li D.Suppressed ion migration in FA-rich perovskite photovoltaics through enhanced nucleation of encapsulation interface.Small2024;20:e2305732

[83]

Zheng Z,Zhao K.Unveiling and overcoming instabilities in perovskite solar cells induced by atomic-layer-deposition tin oxide.Solar RRL2024;8:2301076

[84]

Park H,Kim E,Shin H.Hole-transporting vanadium-containing oxide (V2O5-x) interlayers enhance stability of α-FAPbI3-based perovskite solar cells (~23%).ACS Appl Mater Interfaces2022;14:42007-17

[85]

Singh R,Subbiah AS,Sarkar SK.ALD Al2O3 on hybrid perovskite solar cells: unveiling the growth mechanism and long-term stability.Solar Energy Mater Solar Cells2020;205:110289

[86]

Seo S,Kim E,Park NG.Amorphous TiO2 coatings stabilize perovskite solar cells.ACS Energy Lett2021;6:3332-41

PDF

269

Accesses

0

Citation

Detail

Sections
Recommended

/