Design strategy towards flame-retardant gel polymer electrolytes for safe lithium metal batteries

Borui Yang , Ting Li , Yu Pan , Liu Yang , Kun Li , Jiahao Chen , Zhongfu Yan , Anjun Hu , Jianping Long

Energy Materials ›› 2024, Vol. 4 ›› Issue (5) : 400061

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (5) :400061 DOI: 10.20517/energymater.2023.144
Review

Design strategy towards flame-retardant gel polymer electrolytes for safe lithium metal batteries

Author information +
History +
PDF

Abstract

The emergence of lithium metal batteries (LMBs) as a promising technology in energy storage devices is attributed to their high energy density. However, the inherent flammability and leakage of the internal liquid organic electrolyte pose serious safety risks when exposed to heat. In response to this challenge, gel polymer electrolytes (GPEs) have been developed to mitigate leakage and enhance nonflammability by incorporating flame-retardant groups, thereby improving the safety of LMBs. This review commences with a brief analysis of the thermal runaway mechanism specific to LMBs, emphasizing its distinctions from that of lithium-ion batteries. Following this, the various methods employed to assess the safety of LMBs are discussed, including flammability, thermal stability, and abuse assessment. The following section categorizes recent research on safe GPEs according to different flame retardancy levels providing a concise overview of each category. Finally, the review explores current advancements in developing safety-oriented GPEs and considers potential future research directions.

Keywords

Lithium metal batteries / gel polymer electrolytes / flame retardant / thermal runaway

Cite this article

Download citation ▾
Borui Yang, Ting Li, Yu Pan, Liu Yang, Kun Li, Jiahao Chen, Zhongfu Yan, Anjun Hu, Jianping Long. Design strategy towards flame-retardant gel polymer electrolytes for safe lithium metal batteries. Energy Materials, 2024, 4(5): 400061 DOI:10.20517/energymater.2023.144

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu J,Pollard TP.Electrolyte design for Li-ion batteries under extreme operating conditions.Nature2023;614:694-700

[2]

Ning Z,Melvin DLR.Dendrite initiation and propagation in lithium metal solid-state batteries.Nature2023;618:287-93

[3]

Wang CY,Yang XG.Fast charging of energy-dense lithium-ion batteries.Nature2022;611:485-90

[4]

He M,Hu A,Cao L.Manipulating cation-water chemistry to inhibit hydrogen evolution of zinc metal anodes.Energy Stor Mater2023;62:102941

[5]

Zou R,Ran F.Sulfur-containing polymer cathode materials: from energy storage mechanism to energy density.InfoMat2022;4:e12319

[6]

Li Z,Yang J,Kumar RV.Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries.Nat Energy2023;8:84-93

[7]

Wang G,Zhang Y.Double interface regulation: toward highly stable lithium metal anode with high utilization.InfoMat2022;4:e12293

[8]

Zhao C,Zhou B.Identifying the role of lewis-base sites for the chemistry in lithium-oxygen batteries.Angew Chem Int Ed2023;62:e202302746

[9]

Hu A,Du X.An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode.Energy Environ Sci2021;14:4115-24

[10]

Hu A,Lei T.Heterostructured NiS2/ZnIn2S4 realizing toroid-like Li2O2 deposition in lithium-oxygen batteries with low-donor-number solvents.ACS Nano2020;14:3490-9

[11]

Kim MS,Rudnicki PE et al.Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries.Nat Mater2022;21:445-54

[12]

Hu A,Chen W.Ion transport kinetics in low-temperature lithium metal batteries.Adv Energy Mater2022;12:2202432

[13]

Yin Y,Cheng D.Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries.Nat Energy2022;7:548-59

[14]

Hu A,Lei T.Optimizing redox reactions in aprotic lithium-sulfur batteries.Adv Energy Mater2020;10:2002180

[15]

Zhou B,Hu A.Scalable fabrication of ultra-fine lithiophilic nanoparticles encapsulated in soft buffered hosts for long-life anode-free Li2S-based cells.Nanoscale2023;15:15318-27

[16]

Meng Y,Liu R.Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions.Nat Energy2023;8:1023-33

[17]

Chen S,Yu L.High-efficiency lithium metal batteries with fire-retardant electrolytes.Joule2018;2:1548-58

[18]

Yang B,Li T.High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes.Energy Stor Mater2024;65:103124

[19]

Li Y,Gan X.Synergy of in-situ heterogeneous interphases tailored lithium deposition.Nano Res2023;16:8304-12

[20]

Phan AL,Le PM.Solvent-free electrolyte for high-temperature rechargeable lithium metal batteries.Adv Funct Mater2023;33:2301177

[21]

Wang S,Song H.A high-energy long-cycling solid-state lithium-metal battery operating at high temperatures.Adv Energy Mater2022;12:2201866

[22]

Zhou Q,Lv Z.Lithium metal batteries: a temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries (Adv. Energy Mater. 6/2020).Adv Energy Mater2020;10:2070023

[23]

Zhu GR,Liu QS.Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries.Nat Commun2023;14:4617 PMCID:PMC10394022

[24]

Yuan S,Zeng X.Advanced nonflammable organic electrolyte promises safer Li-metal batteries: from solvation structure perspectives.Adv Mater2023;35:e2206228

[25]

Liu Q,Cui Y.Dendrite-free and long-cycling lithium metal battery enabled by ultrathin, 2D shield-defensive, and single lithium-ion conducting polymeric membrane.Adv Mater2022;34:e2108437

[26]

Kim J,Lu B.High current-density-charging lithium metal batteries enabled by double-layer protected lithium metal anode.Adv Funct Mater2022;32:2207172

[27]

Liang J,Liao X.A nano-shield design for separators to resist dendrite formation in lithium-metal batteries.Angew Chem Int Ed2020;59:6561-6

[28]

Sheng O,Yang T,Luo J.Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries.Energy Environ Sci2023;16:2804-24

[29]

Li R,Zhao C.Air-stable protective layers for lithium anode achieving safe lithium metal batteries.Small Methods2023;7:e2201177

[30]

Huang L,Xu G.Thermal runaway routes of large-format lithium-sulfur pouch cell batteries.Joule2022;6:906-22

[31]

Zhang X,Xie B.Deciphering the thermal failure mechanism of anode-free lithium metal pouch batteries.Adv Energy Mater2023;13:2203648

[32]

Chen R,Lu J.The thermal stability of lithium solid electrolytes with metallic lithium.Joule2020;4:812-21

[33]

Wang J,Sun S.Advances in thermal-related analysis techniques for solid-state lithium batteries.InfoMat2023;5:e12401

[34]

Feng X,He X.Mitigating thermal runaway of lithium-ion batteries.Joule2020;4:743-70

[35]

Yang S,Jiang F,Park HS.Safer solid-state lithium metal batteries: mechanisms and strategies.InfoMat2024;6:e12512

[36]

Gou J,Wang S,Cui K.An ultrahigh modulus gel electrolytes reforming the growing pattern of Li dendrites for interfacially stable lithium-metal batteries.Adv Mater2024;36:e2309677

[37]

Cavers H,Abdollahifar M,Kwade A.Perspectives on improving the safety and sustainability of high voltage lithium-ion batteries through the electrolyte and separator region.Adv Energy Mater2022;12:2200147

[38]

Lee S,Koo B.Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes.Adv Funct Mater2020;30:2003132

[39]

Zhang L,Luo Y.Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte.Nano Energy2022;96:107122

[40]

Hu L,Wang K.A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries.Nat Commun2023;14:3807 PMCID:PMC10300059

[41]

Wang C,Zhang X.Ion hopping: design principles for strategies to improve ionic conductivity for inorganic solid electrolytes.Small2022;18:e2107064

[42]

Zhao C,Li R.A safe anode-free lithium metal pouch cell enabled by integrating stable quasi-solid electrolytes with oxygen-free cathodes.Chem Eng J2023;463:142386

[43]

Jia H,Wagner R,Cekic-Laskovic I.Intrinsically safe gel polymer electrolyte comprising flame-retarding polymer matrix for lithium ion battery application.ACS Appl Mater Interfaces2018;10:42348-55

[44]

Liu K,Qiu Y.Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries.Sci Adv2017;3:e1601978 PMCID:PMC5235334

[45]

Jaumaux P,Zhou D.Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries.Angew Chem Int Ed2020;59:9134-42

[46]

Son K,Woo S,Song EH.Thermal and chemical characterization of the solid-electrolyte interphase in Li-ion batteries using a novel separator sampling method.J Power Sources2019;440:227083

[47]

Zhang Q,Yuan H.Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives.Small Science2021;1:2100058

[48]

Bandhauer TM,Fuller TF.A critical review of thermal issues in lithium-ion batteries.J Electrochem Soc2011;158:R1

[49]

Fu C,Kim J.Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries.Nat Mater2020;19:758-66

[50]

Chen J,Liao Y,Li Z.Selection of redox mediators for reactivating dead Li in lithium metal batteries.Adv Energy Mater2022;12:2201800

[51]

Gan Y,Tan R.Flame-retardant crosslinked polymer stabilizes graphite-silicon composite anode for self-extinguishing lithium-ion batteries.Adv Energy Mater2022;12:2202779

[52]

Tian X,Fang B.Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries.Chem Mater2020;32:9821-48

[53]

Li S,Chai S.Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte.Energy Stor Mater2021;42:628-35

[54]

Huang Q,Zhang G,Wang Y.Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material.J Clean Prod2022;330:129718

[55]

Xie J,Wang Y.Three-in-one fire-retardant poly(phosphate)-based fast ion-conductor for all-solid-state lithium batteries.J Energy Chem2023;80:324-34

[56]

Du Y,Chen L.3D hierarchical fireproof gel polymer electrolyte towards high-performance and comprehensive safety lithium-ion batteries.Chem Eng J2023;476:146605

[57]

Zhang C,Song M.Highly oxidation-resistant ether gel electrolytes for 4.7 V high-safety lithium metal batteries.Adv Energy Mater2023;13:2203870

[58]

Zhu J,Zhao R.In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries.Energy Stor Mater2023;57:92-101

[59]

Le Mong A.Acceleration of selective lithium ion transport of PAES-g-2PEG self-assembled flexible solid-state electrolytes for lithium secondary batteries.Energy Stor Mater2022;47:394-407

[60]

Yang SJ,Jiang FN.Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells.Angew Chem Int Ed2022;61:e202214545

[61]

Jiang FN,Yang SJ.Thermoresponsive electrolytes for safe lithium-metal batteries.Adv Mater2023;35:e2209114

[62]

Zhang S,Du X.In situ -polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries.Energy Environ Sci2023;16:2591-602

[63]

Huang X,Wang T.Polyether-b-amide based solid electrolytes with well-adhered interface and fast kinetics for ultralow temperature solid-state lithium metal batteries.Adv Funct Mater2023;33:2300683

[64]

Ouyang D,Liu J,Weng J.Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions.RSC Adv2018;8:33414-24 PMCID:PMC9086475

[65]

Zhou Z,Zhou X,Ju X.Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse.Renew Energy2024;220:119674

[66]

Jiang G,Wang Z.Stable non-flammable phosphate electrolyte for lithium metal batteries via solvation regulation by the additive.Adv Funct Mater2023;33:2300629

[67]

Wang X,Xue H.A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries.Sustain Energy Fuels2022;6:1281-8

[68]

Zhang S,Lu Y.Designing safer lithium-based batteries with nonflammable electrolytes: a review.eScience2021;1:163-77

[69]

Tan S,Tian Y.In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries.Energy Stor Mater2021;39:186-93

[70]

Xiao L,Liu X.Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries.ACS Energy Lett2019;4:483-8

[71]

Chen J,Liu G.Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries.Energy Stor Mater2020;25:305-12

[72]

Long M,Wang X.Self-adaptable gel polymer electrolytes enable high-performance and all-round safety lithium ion batteries.Energy Stor Mater2022;53:62-71

[73]

Lu D,Li J.Transformed solvation structure of noncoordinating flame-retardant assisted propylene carbonate enabling high voltage Li-Ion batteries with high safety and long cyclability.Adv Energy Mater2023;13:2300684

[74]

Fan X,Chen L.All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents.Nat Energy2019;4:882-90

[75]

Liu Y,Wang Y.Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries.Science2022;375:739-45

[76]

Wu J,Liu Q.A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries.Nat Commun2021;12:5746 PMCID:PMC8484457

[77]

Hu A,Li F.Nonflammable polyfluorides-anchored quasi-solid electrolytes for ultra-safe anode-free lithium pouch cells without thermal runaway.Adv Mater2023;35:e2304762

[78]

Liu F,Chen K et al.In situ polymerized flame retardant gel electrolyte for high-performance and safety-enhanced lithium metal batteries.ACS Appl Mater Interfaces2023;15:23136-45

[79]

Das S.Influence of water and thermal history on ion transport in lithium salt-succinonitrile plastic crystalline electrolytes.Solid State Ionics2010;181:1732-9

[80]

Hu P,Duan Y,Cui G.Progress in nitrile-based polymer electrolytes for high performance lithium batteries.J Mater Chem A2016;4:10070-83

[81]

Sun Q,Ma Y.Fumaronitrile-fixed in-situ gel polymer electrolyte balancing high safety and superior electrochemical performance for Li metal batteries.Energy Stor Mater2022;44:537-46

[82]

Zhang D,An J,Li B.Triallyl cyanurate copolymerization delivered nonflammable and fast ion conducting elastic polymer electrolytes.J Mater Chem A2022;10:23095-102

[83]

Zhang Q,Hou L.Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries.Adv Energy Mater2022;12:2200139

[84]

Liu Y,Li C.Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries.J Mater Chem A2023;11:23360-9

[85]

Zhang H,Liu J.Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery.Energy Stor Mater2023;61:102885

[86]

Zhang Q,Li H.A multifunctional silicon-doped polyether network for double stable interfaces in quasi-solid-state lithium metal batteries.Small2022;18:e2106395

[87]

Chen Y,Long K.A siloxane-based self-healing gel electrolyte with deep eutectic solvents for safe quasi-solid-state lithium metal batteries.Chem Eng J2024;488:150888

[88]

Yang JH,Kim W.Dual flame-retardant mechanism-assisted suppression of thermal runaway in lithium metal batteries with improved electrochemical performances.Adv Energy Mater2024;2304366

[89]

Roh Y,Jin D.Enhanced safety of lithium ion batteries through a novel functional separator with encapsulated flame retardant and hydroxide ceramics.Chem Eng J2023;474:145937

PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

/