The application of in situ liquid cell TEM in advanced battery research

Yi Yuan , Shengda D. Pu , Xiangwen Gao , Alex W. Robertson

Energy Materials ›› 2023, Vol. 3 ›› Issue (4) : 300032

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (4) :300032 DOI: 10.20517/energymater.2023.14
Review

The application of in situ liquid cell TEM in advanced battery research

Author information +
History +
PDF

Abstract

The fast development of modern battery research highly relies on advanced characterisation methods to unveil the fundamental mechanisms of their electrochemical processes. The continued development of in situ characterisation techniques allows the study of dynamic changes during battery cycling rather than just the initial and the final phase. Among these, in situ transmission electron microscopy (TEM) is able to provide direct observation of the structural and morphological evolution in batteries at the nanoscale. Using a compact liquid cell configuration, which allows a fluid to be safely imaged in the high vacuum of the TEM, permits the study of a wide range of candidate liquid electrolytes. In this review, the experimental setup is outlined and the important points for reliable operation are summarised, which are critical to the safety and reproducibility of experiments. Furthermore, the application of in situ liquid cell TEM in understanding various aspects, including dendrite growth, the solid electrolyte interface (SEI) formation, and the electrode structural evolution in different battery systems, is systematically presented. Finally, challenges in the current application and perspectives of the future development of the in situ liquid cell TEM technique are briefly addressed.

Keywords

In situ TEM / liquid cell electrochemical TEM / rechargeable batteries / dendrite growth / SEI formation

Cite this article

Download citation ▾
Yi Yuan, Shengda D. Pu, Xiangwen Gao, Alex W. Robertson. The application of in situ liquid cell TEM in advanced battery research. Energy Materials, 2023, 3(4): 300032 DOI:10.20517/energymater.2023.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davidson DJ.Exnovating for a renewable energy transition.Nat Energy2019;4:254-6

[2]

Whittingham MS.History, evolution, and future status of energy storage.Proc IEEE2012;100:1518-34

[3]

Kim H,Newhouse JM.Liquid metal batteries: past, present, and future.Chem Rev2013;113:2075-99

[4]

Chao D,Xie F.Roadmap for advanced aqueous batteries: From design of materials to applications.Sci Adv2020;6:eaba4098 PMCID:PMC7244306

[5]

Goodenough JB.The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013;135:1167-76

[6]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[7]

Winter M,Xu K.Before Li ion batteries.Chem Rev2018;118:11433-56

[8]

Etacheri V,Elazari R,Aurbach D.Challenges in the development of advanced Li-ion batteries: a review.Energy Environ Sci2011;4:3243-62

[9]

Gao X,Han D.Thermodynamic understanding of Li-dendrite formation.Joule2020;4:1864-79

[10]

Zhang X,Liu X.Dendrites in lithium metal anodes: suppression, regulation, and elimination.ACC Chem Res2019;52:3223-32

[11]

Peled E.Review - SEI: past, present and future.J Electrochem Soc2017;164:A1703

[12]

Liu Q,Schroeder M.Insight on lithium metal anode interphasial chemistry: reduction mechanism of cyclic ether solvent and SEI film formation.Energy Stor Mater2019;17:366-73

[13]

Lu J,Amine K.State-of-the-art characterization techniques for advanced lithium-ion batteries.Nat Energy2017;2:17011

[14]

Lagadec MF,Wood V.Characterization and performance evaluation of lithium-ion battery separators.Nat Energy2019;4:16-25

[15]

Atkins D,Benayad A.Understanding battery interfaces by combined characterization and simulation approaches: challenges and perspectives.Adv Energy Mater2022;12:2102687

[16]

Nazri G.In situ X-ray diffraction of surface layers on lithium in nonaqueous electrolyte.J Electrochem Soc1985;132:1385

[17]

Balasubramanian M,Yang X.In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries.J Power Sources2001;92:1-8

[18]

Waluś S,Colin JF.New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization.Chem Commun2013;49:7899-901

[19]

Xia M,Peng N.Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives.Small Methods2019;3:1900119

[20]

Guo JZ,Wu XL.High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance.Adv Mater2017;29:1701968

[21]

Benayad A,Santini CC.Operando XPS: a novel approach for probing the lithium/electrolyte interphase dynamic evolution.J Phys Chem A2021;125:1069-81

[22]

Hikima K,Kiuchi H.Reaction mechanism of Li2MnO3 electrodes in an all-solid-state thin-film battery analyzed by operando hard X-ray photoelectron spectroscopy.J Am Chem Soc2022;144:236-47

[23]

Shutthanandan V,Zheng J.Applications of XPS in the characterization of battery materials.J Electron Spectros Relat Phenomena2019;231:2-10

[24]

Zhang Z,Smith K.Characterizing batteries by in situ electrochemical atomic force microscopy: a critical review.Adv Energy Mater2021;11:2101518

[25]

Lang S,Hu X,Wen R.Recent progress in the application of in situ atomic force microscopy for rechargeable batteries.Curr Opin Electrochem2019;17:134-42

[26]

Liu T,Bi X.In situ quantification of interphasial chemistry in Li-ion battery.Nat Nanotechnol2019;14:50-6

[27]

Ning Z,Li G.Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells.Nat Mater2021;20:1121-9

[28]

Lu X,Finegan DP.3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling.Nat Commun2020;11:2079 PMCID:PMC7190643

[29]

Jervis R,Neville TP.In situ compression and X-ray computed tomography of flow battery electrodes.J Energy Chem2018;27:1353-61

[30]

Kodama M,Ohashi A,Kawamura K.High-pressure in situ X-ray computed tomography and numerical simulation of sulfide solid electrolyte.J Power Sources2020;462:228160

[31]

Bhattacharyya R,Chen H,Hollenkamp AF.In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries.Nat Mater2010;9:504-10

[32]

Liu X,Xiang Y.Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization.Adv Mater2021;33:e2005878

[33]

Li J,Ke F,Huang L.In situ microscope FTIR spectroscopic studies of interfacial reactions of Sn-Co alloy film anode of lithium ion battery.J Electroanal Chem2010;649:171-6

[34]

Cheng H,Lu M.In situ micro-FTIR study of the solid-solid interface between lithium electrode and polymer electrolytes.J Power Sources2007;174:1027-31

[35]

Cheng Q,Liu Z.Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy.Nat Commun2018;9:2942 PMCID:PMC6065384

[36]

Xue L,Hu A.In situ/operando raman techniques in lithium-sulfur batteries.Small Struct2022;3:2100170

[37]

Gong C,Gao X.Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy.Adv Energy Mater2021;11:2003118

[38]

Zhu YG,Giordano L.Nitrate-mediated four-electron oxygen reduction on metal oxides for lithium-oxygen batteries.Joule2022;6:1887-903

[39]

Li F,Wang HF.Oxygen vacancy-mediated growth of amorphous discharge products toward an ultrawide band light-assisted Li-O2 batteries.Adv Mater2022;34:e2107826

[40]

Chen B,Xuan J,Wang H.Seeing is believing: in situ/operando optical microscopy for probing electrochemical energy systems.Adv Mater Technol2020;5:2000555

[41]

Merryweather AJ,Jacquet Q,Rao A.Operando optical tracking of single-particle ion dynamics in batteries.Nature2021;594:522-8

[42]

Serra-Maia R,Meng AC.Nanoscale chemical and structural analysis during in situ scanning/transmission electron microscopy in liquids.ACS Nano2021;15:10228-40

[43]

Bülter H,Schwenzel J.Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy.Angew Chem Int Ed2014;53:10531-5

[44]

Woods J,Chapagain P,Neupane S.In situ transmission electron microscopy observations of rechargeable lithium ion batteries.Nano Energy2019;56:619-40

[45]

Zhang C,Fernando JFS,von Treifeldt JE.Recent progress of in situ transmission electron microscopy for energy materials.Adv Mater2020;32:e1904094

[46]

Fan Z,Baumann D.In situ transmission electron microscopy for energy materials and devices.Adv Mater2019;31:e1900608

[47]

Fahad S,Kushima A.In-situ TEM observation of fast and stable reaction of lithium polysulfide infiltrated carbon composite and its application as a lithium sulfur battery electrode for improved cycle lifetime.J Power Sources2021;506:230175

[48]

Wen Y,Ma C.In situ TEM visualization of Ag catalysis in Li-O2 nanobatteries.Nano Res2023;16:6833-9

[49]

Wang K,Huang X.Synergy of cations in high entropy oxide lithium ion battery anode.Nat Commun2023;14:1487 PMCID:PMC10023782

[50]

Zhang Y,Kang C.Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at -30 °C.Matter2023;6:1928-44

[51]

Ye W,Zhang B.Superfast mass transport of Na/K via mesochannels for dendrite-free metal batteries.Adv Mater2023;35:e2210447

[52]

Wang H,Yu R.Unraveling the reaction mechanisms of electrode materials for sodium-ion and potassium-ion batteries by in situ transmission electron microscopy.Interdiscip Mater2022;1:196-212

[53]

Gong C,Zhang S.The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes.Energy Environ Sci2023;16:535-45

[54]

Pu SD,Gao X.Current-density-dependent electroplating in Ca electrolytes: from globules to dendrites.ACS Energy Lett2020;5:2283-90

[55]

Zhang Q,Mei L.In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries.Matter2022;5:1235-50

[56]

Park J,Noh N.Graphene liquid cell electron microscopy: progress, applications, and perspectives.ACS Nano2021;15:288-308

[57]

de Jonge N, Houben L, Dunin-borkowski RE, Ross FM. Resolution and aberration correction in liquid cell transmission electron microscopy.Nat Rev Mater2019;4:61-78

[58]

Pu S,Robertson AW.Liquid cell transmission electron microscopy and its applications.R Soc Open Sci2020;7:191204 PMCID:PMC7029903

[59]

Gupta T,Park JH,Ross FM.Spatially dependent dose rate in liquid cell transmission electron microscopy.Nanoscale2018;10:7702-10

[60]

de Jonge N. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers.Ultramicroscopy2018;187:113-25

[61]

Abellan P,Parent LR.Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.Nano Lett2014;14:1293-9

[62]

Tao S,Lyu M.In operando closed-cell transmission electron microscopy for rechargeable battery characterization: scientific breakthroughs and practical limitations.Nano Energy2022;96:107083

[63]

Grogan JM,Ross FM.Bubble and pattern formation in liquid induced by an electron beam.Nano Lett2014;14:359-64

[64]

Lee J,Browning ND.Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy.Phys Chem Chem Phys2021;23:17766-73

[65]

Schneider NM,Mendel BJ,Ross FM.Electron-water interactions and implications for liquid cell electron microscopy.J Phys Chem C2014;118:22373-82

[66]

Yang R,Fan Y.Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes.Nat Protoc2023;18:555-78

[67]

Sasaki Y,Mita Y,Kuwabara A.Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopy.Microscopy2022;71:238-41

[68]

Zeng Z,Bustillo K.In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy.Nano Lett2015;15:5214-20

[69]

Karakulina OM,Dachraoui W,Hadermann J.In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for Li-ion batteries.Nano Lett2018;18:6286-91

[70]

Sasaki Y,Kawasaki T,Ukyo Y.In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode.J Power Sources2021;481:228831

[71]

Gu M,Mehdi BL.Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes.Nano Lett2013;13:6106-12

[72]

Paul PP,Colclasure AM.A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries.Adv Energy Mater2021;11:2100372

[73]

Xu Y,Jie Y.Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives.Adv Energy Mater2022;12:2200398

[74]

Liu X,Wu Y,Sun Y.In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques.Small Methods2021;5:e2101130

[75]

Liu D,Lin R.Review of recent development of in situ/operando characterization techniques for lithium battery research.Adv Mater2019;31:e1806620

[76]

Wang H,Kong X.Liquid electrolyte: the nexus of practical lithium metal batteries.Joule2022;6:588-616

[77]

Zhao C,Yan C.Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review.Energy Stor Mater2020;24:75-84

[78]

Yang H,Sun Z.Reliable liquid electrolytes for lithium metal batteries.Energy Stor Mater2020;30:113-29

[79]

Eweka E,Ritchie A.Electrolytes and additives for high efficiency lithium cycling.J Power Sources1997;65:247-51

[80]

Lu Y,Shu J.Stable lithium electrodeposition in salt-reinforced electrolytes.J Power Sources2015;279:413-8

[81]

Kong F,Nadeau G.In situ studies of SEI formation.J Power Sources2001;97-8:58-66

[82]

Liu W,Mitlin D.Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes.Adv Energy Mater2020;10:2002297

[83]

Zhai P,Gu X,Gong Y.Interface engineering for lithium metal anodes in liquid electrolyte.Adv Energy Mater2020;10:2001257

[84]

Zhang X,Zhang Q.Advances in interfaces between Li metal anode and electrolyte.Adv Mater Interfaces2018;5:1701097

[85]

Huang JY,Wang CM.In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode.Science2010;330:1515-20

[86]

Zeng Z,Liao HG,Chu YH.Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM.Nano Lett2014;14:1745-50

[87]

Sacci RL,Balke N,More KL.Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters.Nano Lett2015;15:2011-8

[88]

Mehdi BL,Nasybulin E.Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM.Nano Lett2015;15:2168-73

[89]

Leenheer AJ,Zavadil KR,Harris CT.Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy.ACS Nano2015;9:4379-89

[90]

Kushima A,Su C.Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams.Nano Energy2017;32:271-9

[91]

Jiang G,Wang H.Perspective on high-concentration electrolytes for lithium metal batteries.Small Struct2021;2:2000122

[92]

Qian J,Xu W.High rate and stable cycling of lithium metal anode.Nat Commun2015;6:6362 PMCID:PMC4346622

[93]

Harrison KL,Hahn NT.Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy.ACS Nano2017;11:11194-205

[94]

Zhao J,Shi F.Surface fluorination of reactive battery anode materials for enhanced stability.J Am Chem Soc2017;139:11550-8

[95]

Cao X,Ren X.Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries.Proc Natl Acad Sci USA2021;118:e2020357118 PMCID:PMC7936379

[96]

Ko J.Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries?.Ceram Int2019;45:30-49

[97]

Tan J,Dong P,Ye M.A growing appreciation for the role of LiF in the solid electrolyte interphase.Adv Energy Mater2021;11:2100046

[98]

Lee S,Alvarado J.Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induced solid-electrolyte interphase modification.Energy Environ Sci2020;13:1832-42

[99]

Lee S,Betzler S,Doeff MM.Lithium metal stripping mechanisms revealed through electrochemical liquid cell electron microscopy.Nano Energy2022;102:107641

[100]

Sun L,Shao R,Jiang R.Recent progress and future perspective on practical silicon anode-based lithium ion batteries.Energy Stor Mater2022;46:482-502

[101]

Wu H.Designing nanostructured Si anodes for high energy lithium ion batteries.Nano Today2012;7:414-29

[102]

Jin Y,Lu Z,Zhu J.Challenges and recent progress in the development of Si anodes for lithium-ion battery.Adv Energy Mater2017;7:1700715

[103]

Chae S,Kim K,Cho J.Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries.Joule2017;1:47-60

[104]

Gonzalez A, Yang N, Liu R. Silicon anode design for lithium-ion batteries: progress and perspectives.J Phys Chem C2017;121:27775-87

[105]

Yoshio M,Fukuda K,Dimov N.Carbon-coated Si as a lithium-ion battery anode material.J Electrochem Soc2002;149:A1598

[106]

Xu K,Guan K.Research progress on coating structure of silicon anode materials for lithium-ion batteries.ChemSusChem2021;14:5135-60

[107]

Sim S,Park S.Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries.Adv Mater2013;25:4498-503

[108]

Gu M,Li X.In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix.ACS Nano2012;6:8439-47

[109]

McDowell MT,Harris JT.In situ TEM of two-phase lithiation of amorphous silicon nanospheres.Nano Lett2013;13:758-64

[110]

Leenheer AJ,Zavadil KR.Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy.ACS Nano2016;10:5670-8

[111]

Wang CM,Wang Z.In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.Nano Lett2012;12:1624-32

[112]

Zhou H,Pei B.What limits the capacity of layered oxide cathodes in lithium batteries?.ACS Energy Lett2019;4:1902-6

[113]

Liu X,Kolluru VSC.Origin and regulation of oxygen redox instability in high-voltage battery cathodes.Nat Energy2022;7:808-17

[114]

Ding Z,Zou J.Reaction mechanism and structural evolution of fluorographite cathodes in solid-state K/Na/Li batteries.Adv Mater2021;33:e2006118

[115]

House RA,Pérez-osorio MA.First-cycle voltage hysteresis in Li-rich 3D cathodes associated with molecular O2 trapped in the bulk.Nat Energy2020;5:777-85

[116]

House RA,Pérez-osorio MA,Boivin E.The role of O2 in O-redox cathodes for Li-ion batteries.Nat Energy2021;6:781-9

[117]

Holtz ME,Gunceler D.Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte.Nano Lett2014;14:1453-9

[118]

Delmas C.Sodium and sodium-ion batteries: 50 years of research.Adv Energy Mater2018;8:1703137

[119]

Tian Z,Liu G.Electrolyte solvation structure design for sodium ion batteries.Adv Sci2022;9:e2201207 PMCID:PMC9353483

[120]

Doi K,Okoshi M.Reversible sodium metal electrodes: is fluorine an essential interphasial component?.Angew Chem Int Ed2019;58:8024-8 PMCID:PMC6593729

[121]

Ma L,Yao S.Dendrite-free lithium metal and sodium metal batteries.Energy Stor Mater2020;27:522-54

[122]

Lee B,Mitlin D.Sodium metal anodes: emerging solutions to dendrite growth.Chem Rev2019;119:5416-60

[123]

Seh ZW,Sun Y.A highly reversible room-temperature sodium metal anode.ACS Cent Sci2015;1:449-55 PMCID:PMC4827673

[124]

Bao C,Liu P.Solid electrolyte interphases on sodium metal anodes.Adv Funct Mater2020;30:2004891

[125]

Xu M,Ihsan-ul-haq M.NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries.Energy Stor Mater2022;44:477-86

[126]

Zeng Z,Lee S.Electrode roughness dependent electrodeposition of sodium at the nanoscale.Nano Energy2020;72:104721

[127]

Shi Y,Shi L.An overview and future perspectives of rechargeable zinc batteries.Small2020;16:e2000730

[128]

Huy VP, Hieu LT, Hur J. Zn metal anodes for Zn-ion batteries in mild aqueous electrolytes: challenges and strategies.Nanomaterials2021;11:2746 PMCID:PMC8541016

[129]

Song M,Chao D.Recent advances in Zn-ion batteries.Adv Funct Mater2018;28:1802564

[130]

Yang Q,Liu Z.Dendrites in Zn-based batteries.Adv Mater2020;32:e2001854

[131]

Hao J,Zeng X,Mao J.Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries.Energy Environ Sci2020;13:3917-49

[132]

Hao J,Li X.An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries.Adv Mater2020;32:e2003021

[133]

Yi Z,Hou F,Liang J.Strategies for the stabilization of Zn metal anodes for Zn-ion batteries.Adv Energy Mater2021;11:2003065

[134]

Park JH,Steingart DA,Kodambaka S.Control of growth front evolution by Bi additives during ZnAu electrodeposition.Nano Lett2018;18:1093-8

[135]

Li M,Knibbe R.Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope.J Phys Chem Lett2021;12:913-8

[136]

Sasaki Y,Kuwabara A.On-chip electrochemical analysis combined with liquid-phase electron microscopy of zinc deposition/dissolution.J Electrochem Soc2021;168:112511

[137]

Huang Y,Guo Z.Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study.Energy Stor Mater2022;46:243-51

[138]

Chamoun M,Tai C,Noréus D.Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions.Energy Stor Mater2018;15:351-60

[139]

Wang F,Gao T.Highly reversible zinc metal anode for aqueous batteries.Nat Mater2018;17:543-9

[140]

Zhang N,Liu Y.Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery.J Am Chem Soc2016;138:12894-901

[141]

Olbasa BW,Chiu SF.High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes.ACS Appl Energy Mater2020;3:4499-508

[142]

Niu J,Aurbach D.Alloy anode materials for rechargeable Mg ion batteries.Adv Energy Mater2020;10:2000697

[143]

Asif M,Rashad M.Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures.Energy Stor Mater2021;42:129-44

[144]

Mao M,Hou S.A critical review of cathodes for rechargeable Mg batteries.Chem Soc Rev2018;47:8804-41

[145]

Shao Y,Li X.Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries.Nano Lett2014;14:255-60

[146]

Ling C,Matsui M.Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology.Electrochim Acta2012;76:270-4

[147]

Wu YA,Farmand M.In-situ multimodal imaging and spectroscopy of Mg electrodeposition at electrode-electrolyte interfaces.Sci Rep2017;7:42527 PMCID:PMC5301215

[148]

Kwak JH,Oh SH.Operando visualization of morphological evolution in Mg metal anode: insight into dendrite suppression for stable Mg metal batteries.ACS Energy Lett2022;7:162-70

[149]

Ding MS,Behm RJ,Giffin GA.Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes.J Electrochem Soc2018;165:A1983

[150]

Davidson R,Santos D.Formation of magnesium dendrites during electrodeposition.ACS Energy Lett2019;4:375-6

[151]

Singh N,Tutusaus O.Achieving high cycling rates via in situ generation of active nanocomposite metal anodes.ACS Appl Energy Mater2018;1:4651-61

[152]

Lipson AL,Lapidus SH,Vaughey JT.Rechargeable Ca-ion batteries: a new energy storage system.Chem Mater2015;27:8442-7

[153]

Nielson KV.Dawn of calcium batteries.Angew Chem Int Ed2020;59:3368-70

[154]

Dompablo ME, Ponrouch A, Johansson P, Palacín MR. Achievements, challenges, and prospects of calcium batteries.Chem Rev2020;120:6331-57

[155]

Nielson KV,Liu TL.Optimizing calcium electrolytes by solvent manipulation for calcium batteries.Batter Supercaps2020;3:766-72

[156]

Song H,Tian F.Electrolyte optimization and interphase regulation for significantly enhanced storage capability in Ca-metal batteries.Adv Funct Mater2022;32:2200004

[157]

Li Z,Fichtner M.Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries.Energy Environ Sci2019;12:3496-501

[158]

Li L,Zhang X.Recent progress on the development of metal-air batteries.Adv Sustain Syst2017;1:1700036

[159]

Sun Y,Jiang Y.Recent advances and challenges in divalent and multivalent metal electrodes for metal-air batteries.J Mater Chem A2019;7:18183-208

[160]

Mei J,Liang J,Dou SX.Toward promising cathode catalysts for nonlithium metal-oxygen batteries.Adv Energy Mater2020;10:1901997

[161]

Sharon D,Afri M,Noked M.Aprotic metal-oxygen batteries: recent findings and insights.J Solid State Electrochem2017;21:1861-78

[162]

Wang H.Materials design for rechargeable metal-air batteries.Matter2019;1:565-95

[163]

Liu T,Zhao EW,Garcia-Araez N.Current challenges and routes forward for nonaqueous lithium-air batteries.Chem Rev2020;120:6558-625

[164]

Wang Y.Nonaqueous lithium-oxygen batteries: reaction mechanism and critical open questions.Energy Stor Mater2020;28:235-46

[165]

Khan Z,Crispin X.Can hybrid Na-air batteries outperform nonaqueous Na-O2 batteries?.Adv Sci2020;7:1902866 PMCID:PMC7055569

[166]

Yadegari H.Recent advances on sodium-oxygen batteries: a chemical perspective.ACC Chem Res2018;51:1532-40

[167]

Park J,Kwak WJ.Potassium-oxygen batteries: significance, challenges, and prospects.J Phys Chem Lett2020;11:7849-56

[168]

Li C,Gebert F.Current progress on rechargeable magnesium-air battery.Adv Energy Mater2017;7:1700869

[169]

Ryu J,Cho J.Advanced technologies for high-energy aluminum-air batteries.Adv Mater2019;31:e1804784

[170]

Yang D,Yan X.Recent progress in oxygen electrocatalysts for zinc-air batteries.Small Methods2017;1:1700209

[171]

Peng L,Zhang T.Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries.Adv Energy Mater2020;10:2003018

[172]

Mckerracher RD,Wills RGA,Walsh FC.A review of the iron-air secondary battery for energy storage.ChemPlusChem2015;80:323-35

[173]

Débart A,Armstrong G.An O2 cathode for rechargeable lithium batteries: the effect of a catalyst.J Power Sources2007;174:1177-82

[174]

Débart A,Bao J.Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries.Angew Chem Int Ed2008;47:4521-4

[175]

Bruce PG,Hardwick LJ.Li-O2 and Li-S batteries with high energy storage.Nat Mater2011;11:19-29

[176]

Zhang SS,Read J.Discharge characteristic of a non-aqueous electrolyte Li/O2 battery.J Power Sources2010;195:1235-40

[177]

Peng Z,Hardwick LJ.Oxygen reactions in a non-aqueous Li+ electrolyte.Angew Chem Int Ed2011;50:6351-5

[178]

Read J.Characterization of the lithium/oxygen organic electrolyte battery.J Electrochem Soc2002;149:A1190

[179]

Schwager P,Plettenberg I.Review of local in situ probing techniques for the interfaces of lithium-ion and lithium-oxygen batteries.Energy Technol2016;4:1472-85

[180]

Zhu YG,Rong Y.Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries.Nat Commun2017;8:14308 PMCID:PMC5303818

[181]

Mirzaeian M.Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy.J Power Sources2010;195:6817-24

[182]

Kushima A,Fujiwara Y,Kusumi N.Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-oxygen battery.Nano Lett2015;15:8260-5

[183]

Aurbach D,Nazar LF.Advances in understanding mechanisms underpinning lithium-air batteries.Nat Energy2016;1:16128

[184]

Thotiyl MM, Freunberger SA, Peng Z, Bruce PG. The carbon electrode in nonaqueous Li-O2 cells.J Am Chem Soc2013;135:494-500

[185]

Chen Y,Peng Z,Bruce PG.Charging a Li-O2 battery using a redox mediator.Nat Chem2013;5:489-94

[186]

Johnson L,Liu Z.The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries.Nat Chem2014;6:1091-9

[187]

Yang K,Jia L.Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na-O2 batteries.J Energy Chem2021;56:438-43

[188]

Ko Y,Cho S.Liquid-based janus electrolyte for sustainable redox mediation in lithium-oxygen batteries.Adv Energy Mater2021;11:2102096

[189]

Yang C,Liu P.Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li-O2 microbattery by scanning transmission electron microscopy.Adv Mater2017;29:1702752

[190]

Lee D,Ko Y.Direct observation of redox mediator-assisted solution-phase discharging of Li-O2 battery by liquid-phase transmission electron microscopy.J Am Chem Soc2019;141:8047-52

[191]

Adelhelm P,Bender CL,Eufinger C.From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries.Beilstein J Nanotechnol2015;6:1016-55 PMCID:PMC4419580

[192]

Hartmann P,Vračar M.A rechargeable room-temperature sodium superoxide (NaO2) battery.Nat Mater2013;12:228-32

[193]

Lutz L,Demortière A.Operando monitoring of the solution-mediated discharge and charge processes in a Na-O2 battery using liquid-electrochemical transmission electron microscopy.Nano Lett2018;18:1280-9

[194]

Tarnev T,Andronescu C,Schuhmann W.A universal nano-capillary based method of catalyst immobilization for liquid-cell transmission electron microscopy.Angew Chem Int Ed2020;59:5586-90 PMCID:PMC7155139

[195]

Robertson AW,Mehdi BL,De Yoreo J.Nanoparticle immobilization for controllable experiments in liquid-cell transmission electron microscopy.ACS Appl Mater Interfaces2018;10:22801-8.

[196]

Stricker EA,Wainright JS,Savinell RF.Current density distribution in electrochemical cells with small cell heights and coplanar thin electrodes as used in ec-S/TEM cell geometries.J Electrochem Soc2019;166:H126

[197]

Zhang X,Chen Z,Liu W.Pitfalls in electrochemical liquid cell transmission electron microscopy for dendrite observation.Adv Energy Sustain Res2022;3:2100160

[198]

Peng X,Zhang Y.Unraveling Li growth kinetics in solid electrolytes due to electron beam charging.Sci Adv2023;9:eabq3285 PMCID:PMC10132747

[199]

Koo K,Ji S,Yuk JM.Liquid-flowing graphene chip-based high-resolution electron microscopy.Adv Mater2021;33:e2005468

[200]

Dunn G,Pham T.Graphene-sealed flow cells for in situ transmission electron microscopy of liquid samples.ACS Nano2020;14:9637-43

[201]

Stevens A,Hao W.Subsampled STEM-ptychography.Appl Phys Lett2018;113:033104

[202]

Yang Y,Lu X.Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy.J Am Chem Soc2022;144:15698-708

[203]

Yang Y,Yu S.Operando studies reveal active Cu nanograins for CO2 electroreduction.Nature2023;614:262-9

[204]

Spurgeon SR,Jones L.Towards data-driven next-generation transmission electron microscopy.Nat Mater2021;20:274-9 PMCID:PMC8485843

PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

/