PDF
Abstract
Aqueous zinc-metal batteries hold immense promise for large-scale energy storage applications due to their cost-effectiveness and superior safety features. However, uncontrolled dendrite growth, corrosion and side reactions in aqueous environments destabilize the electrode/electrolyte, leading to Zn plating/striping irreversibility. Herein, a low-cost, non-toxic functional electrolyte additive, tetraethyl ammonium bromide (TEAB), addresses this challenge. The preferential adsorption of TEAB on the surface of the Zn anode endows the Zn/electrolyte interface with an optimized electric field distribution and abundant active sites for the uniform and dendrite-free Zn2+ deposition. Moreover, TEAB disrupts the H-bond network between the electrolytes, effectively suppressing water-induced side reactions and corrosion. Consequently, a Zn||Zn symmetric battery achieves a long cycle life of 4,950 h at 1 mA cm-2, and the average coulombic efficiency of the Zn||Cu battery reaches as high as 99.5%. Additionally, even after 2,000 cycles at 3 A g-1, the capacity retention of the Zn||MnO2 battery remains at 91.22%. The non-alkaline full Zn||air batteries deliver remarkable cycling stability up to 270 h.
Keywords
Additives
/
dendrite free
/
tetraethyl ammonium bromide
/
Zn anodes
Cite this article
Download citation ▾
Tao Fang, Mengxue Wu, Feiyu Lu, Zhengyi Zhou, Yanpeng Fu, Zhicong Shi.
Dendrite-free Zn anodes enabled by interface engineering for non-alkaline Zn-air and Zn-ion batteries.
Energy Materials, 2024, 4(4): 400039 DOI:10.20517/energymater.2023.139
| [1] |
Blanc LE,Nazar LF.Scientific challenges for the implementation of Zn-ion batteries.Joule2020;4:771-99
|
| [2] |
Yang J,Sun Y.Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives.Nanomicro Lett2022;14:42 PMCID:PMC8724388
|
| [3] |
Wang Y,Yang F.Electrolyte engineering enables high performance zinc-ion batteries.Small2022;18:e2107033
|
| [4] |
Xu M,Zhang Y,Lai C.Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries.J Energy Chem2022;73:575-87
|
| [5] |
Li Y,Cai Y.Designing advanced aqueous zinc-ion batteries: principles, strategies, and perspectives.Energy Environ Mater2022;5:823-51
|
| [6] |
Zheng Y,Ou J.A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures.Chem Soc Rev2020;49:8790-839
|
| [7] |
Schon TB,Li PF.The rise of organic electrode materials for energy storage.Chem Soc Rev2016;45:6345-404
|
| [8] |
Chen Y,Zhao Y.A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards.J Energy Chem2021;59:83-99
|
| [9] |
Liu B,Yuan C.Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review.Energy Stor Mater2020;24:85-112
|
| [10] |
Chao D,Xie F.Roadmap for advanced aqueous batteries: from design of materials to applications.Sci Adv2020;6:eaba4098 PMCID:PMC7244306
|
| [11] |
Fang G,Pan A.Recent advances in aqueous zinc-ion batteries.ACS Energy Lett2018;3:2480-501
|
| [12] |
Huang S,Tian J.Recent progress in the electrolytes of aqueous zinc-ion batteries.Chemistry2019;25:14480-94
|
| [13] |
Park JH,Joung D.Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries.Chem Eng J2022;433:133532
|
| [14] |
Ma L,Li N.Hydrogen-free and dendrite-free all-solid-state zn-ion batteries.Adv Mater2020;32:e1908121
|
| [15] |
Li B,Wang T.Interfacial engineering strategy for high-performance Zn metal anodes.Nanomicro Lett2021;14:6 PMCID:PMC8640001
|
| [16] |
Xie C,Wang Q,Tang Y.Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review.Carbon Energy2020;2:540-60
|
| [17] |
Hao J,Li B.Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive.Adv Funct Mater2019;29:1903605
|
| [18] |
Ming J,Wu Y.New insight on the role of electrolyte additives in rechargeable lithium ion batteries.ACS Energy Lett2019;4:2613-22
|
| [19] |
Fang T,Hu A,Fu Y.Dendrite-free and stable zinc-ion batteries enabled by a cation-anion synergistic regulation additive.J Power Sources2023;581:233521
|
| [20] |
Bayaguud A,Fu Y.Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries.ACS Energy Lett2020;5:3012-20
|
| [21] |
Sun T,Du H.Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery.Nanomicro Lett2021;13:204 PMCID:PMC8501177
|
| [22] |
Chen P,Tang D.Recent progress in electrolytes for Zn-air batteries.Front Chem2020;8:372 PMCID:PMC7264378
|
| [23] |
Lin MH,Cheng PH,Wang CC.Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc-air batteries: mechanism studies of dendrite suppression and corrosion inhibition.J Mater Chem A2020;8:20637-49
|
| [24] |
Chen CY,Kubota K,Xu Q.A room-temperature molten hydrate electrolyte for rechargeable zinc-air batteries.Adv Energy Mater2019;9:1900196
|
| [25] |
Kapaev RR,Sonoo M,Shalom M.Structure-performance relations for carbons in Zn-air battery cathodes with non-alkaline electrolytes.Electrochim Acta2023;456:142462
|
| [26] |
Wu WF,Zhan Y.Recent progress of electrolytes and electrocatalysts in neutral aqueous zinc-air batteries.Chem Eng J2023;451:138608
|
| [27] |
Wang C,Zhou Z.Rechargeable zinc-air batteries with neutral electrolytes: recent advances, challenges, and prospects.EnergyChem2021;3:100055
|
| [28] |
Wang K,Wang Y,Wang W.Advanced rechargeable zinc-air battery with parameter optimization.Appl Energy2018;225:848-56
|
| [29] |
Sun W,Wang F,Winter M.A non-alkaline electrolyte for electrically rechargeable zinc-air batteries with long-term operation stability in ambient air.Angew Chem Int Ed2022;61:e202207353
|
| [30] |
Liu Z,Gao Y.Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries.Adv Funct Mater2023;33:2308463
|
| [31] |
Ghavami RK,Tabatabaei SM.Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn-MnO2 alkaline batteries.J Power Sources2007;164:934-46
|
| [32] |
Chang C,Li T.A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics.Energy Environ Sci2024;17:680-94
|
| [33] |
Wan S,Chen J.Reductive competition effect-derived solid electrolyte interphase with evenly scattered inorganics enabling ultrahigh rate and long-life span sodium metal batteries.J Am Chem Soc2023;145:21661-71
|
| [34] |
Gou Q,Zhang Q.Electrolyte regulation of bio-inspired zincophilic additive toward high-performance dendrite-free aqueous zinc-ion batteries.Small2023;19:e2207502
|
| [35] |
Zhi L,Liu X,Li X.Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries.Nano Energy2022;102:107697
|
| [36] |
Zhou W,Tian Q,Xu X.Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries.Energy Stor Mater2022;44:57-65
|
| [37] |
Zhang D,Chanajaree R.Reconstructing the anode interface and solvation shell for reversible zinc anodes.ACS Appl Mater Interfaces2023;15:11940-8
|
| [38] |
Sumboja A,Zheng G.Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst.J Power Sources2016;332:330-6
|