Challenges and modification strategies of air-processed all-inorganic CsPbX3 perovskite films for efficient photovoltaics

Li Cao , Yu Tong , Hongqiang Wang , Kun Wang

Energy Materials ›› 2024, Vol. 4 ›› Issue (5) : 400055

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (5) :400055 DOI: 10.20517/energymater.2023.136
Review

Challenges and modification strategies of air-processed all-inorganic CsPbX3 perovskite films for efficient photovoltaics

Author information +
History +
PDF

Abstract

All-inorganic perovskites CsPbX3 (X: halogen ions) have gained significant attention for application in next generation photovoltaic technologies due to their superior thermal stability and excellent optoelectronic properties. Compared with fabrication in N2 glove boxes, ambient air processing could simplify the operation and reduce the fabrication cost, which is favorable for boosting the commercialization of perovskite solar cells (PSCs). However, the moisture in ambient air tends to cause the phase transformation of inorganic perovskite from the photoactive black phase to the photo-inactive yellow one, thus deteriorating the photovoltaic performance. Considering the obstacles from both the intrinsic structure instability and the external atmosphere, tremendous efforts have been made for pursuing high-efficiency and stable all-inorganic PSCs that can be processed in ambient air. In this review, we first analyze the challenges for fabricating CsPbX3 in ambient air from both the intrinsic characters and external atmosphere and then overview the progress of the air-fabricated CsPbX3 films for photovoltaic applications. The recently reported various modification strategies, including the compositional/precursor, solvent, additive, and interface engineering, for achieving high-quality and stable CsPbX3 films are comprehensively summarized. Finally, a brief conclusion and outlook is given to inspire more research interest on air-fabricated CsPbX3 photovoltaics. This review provides significant guidance for further optimizing the air-processible CsPbX3 films to boost the large-scale commercialization of cost-effective PSCs in the future.

Keywords

All-inorganic perovskite solar cells / ambient fabrication / efficiency / stability

Cite this article

Download citation ▾
Li Cao, Yu Tong, Hongqiang Wang, Kun Wang. Challenges and modification strategies of air-processed all-inorganic CsPbX3 perovskite films for efficient photovoltaics. Energy Materials, 2024, 4(5): 400055 DOI:10.20517/energymater.2023.136

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Green MA,Snaith HJ.The emergence of perovskite solar cells.Nat Photon2014;8:506-14

[2]

National Renewable Energy Laboratory. Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Last accessed on 27 May 2024].

[3]

Park N,Miyasaka T,Emery K.Towards stable and commercially available perovskite solar cells.Nat Energy2016;1:16152

[4]

Boyd CC,Leijtens T.Understanding degradation mechanisms and improving stability of perovskite photovoltaics.Chem Rev2019;119:3418-51

[5]

Tian J,Yao Q,Brabec CJ.Inorganic halide perovskite solar cells: progress and challenges.Adv Energy Mater2020;10:2000183

[6]

Kye YH,Jong UG,Walsh A.Critical role of water in defect aggregation and chemical degradation of perovskite solar cells.J Phys Chem Lett2018;9:2196-201

[7]

Wang K,Cao L.Progress of inverted inorganic cesium lead halide perovskite solar cells.Cell Rep Phys Sci2023;4:101726

[8]

Eperon GE,Sutton RJ.Inorganic caesium lead iodide perovskite solar cells.J Mater Chem A2015;3:19688-95

[9]

Swarnkar A,Sanehira EM.Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics.Science2016;354:92-5

[10]

Wang Z,Zhang H.Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells.Angew Chem Int Ed2023;62:e202305815

[11]

Yan L,Cui P.Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt.Nat Energy2023;8:1158-67

[12]

Zhang J,Jin Z.All-inorganic CsPbX3 perovskite solar cells: progress and prospects.Angew Chem Int Ed2019;58:15596-618

[13]

Steele JA,Dovgaliuk I.Thermal unequilibrium of strained black CsPbI3 thin films.Science2019;365:679-84

[14]

Huang Y,He Y.Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI 3.J Phys Chem C2018;122:1345-50

[15]

deQuilettes DW,Stranks SD.Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells.Science2015;348:683-6

[16]

Shao S,Sherkar TS.The effect of the microstructure on trap-assisted recombination and light soaking phenomenon in hybrid perovskite solar cells.Adv Funct Mater2016;26:8094-102

[17]

Cappel UB,Lanzilotto V.Partially reversible photoinduced chemical changes in a mixed-ion perovskite material for solar cells.ACS Appl Mater Interfaces2017;9:34970-8 PMCID:PMC5663419

[18]

Bella F,Correa-Baena JP.Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers.Science2016;354:203-6

[19]

Lin J,Dou L.Thermochromic halide perovskite solar cells.Nat Mater2018;17:261-7

[20]

Liang L,Zhou F.The humidity-insensitive fabrication of efficient CsPbI3 solar cells in ambient air.J Mater Chem A2019;7:26776-84

[21]

Li M,Ma X.Hydrogen-bonding-facilitated dimethylammonium extraction for stable and efficient CsPbI3 solar cells with environmentally benign processing.Joule2023;7:2595-608

[22]

Mali SS,Steele JA,Dzade NY.Implementing dopant-free hole-transporting layers and metal-incorporated CsPbI2Br for stable all-inorganic perovskite solar cells.ACS Energy Lett2021;6:778-88 PMCID:PMC8018314

[23]

Zhang X,Wu H.Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals.Angew Chem Int Ed2018;57:3337-42

[24]

Aristidou N,Chotchuangchutchaval T.The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers.Angew Chem Int Ed2015;54:8208-12

[25]

Aristidou N,Sanchez-Molina I.Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells.Nat Commun2017;8:15218 PMCID:PMC5437277

[26]

Tsvetkov DS,Sereda VV,Malyshkin DA.Formation thermodynamics, stability, and decomposition pathways of CsPbX3 (X = Cl, Br, I) photovoltaic materials.J Phys Chem C2020;124:4252-60

[27]

Liu SC,Yang Y.Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells.J Am Chem Soc2019;141:18075-82

[28]

Liang J,Wang C.CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability.J Am Chem Soc2017;139:14009-12

[29]

Jena AK,Sanehira Y,Miyasaka T.Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3.Chem Mater2018;30:6668-74

[30]

Yang F,Kapil G.All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance.Angew Chem Int Ed2018;57:12745-9

[31]

Mali SS,Hong CK.Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells.Nano Lett2019;19:6213-20

[32]

Patil JV,Hong CK.A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency.Solar RRL2020;4:2000164

[33]

Chen S,Liu X.Lattice reconstruction of La-incorporated CsPbI2Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells.J Mater Chem C2020;8:3351-8

[34]

Patil JV,Park DW.Novel ytterbium-doped CsPbI2Br thin-films-based inorganic perovskite solar cells toward improved phase stability.Mater Today Chem2021;22:100557

[35]

Mali SS,Shinde PS,Hong CK.Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells.Matter2021;4:635-53

[36]

Patil JV,Hong CK.Holmium rare earth metal ion incorporated and ambient-air processed all-inorganic γ-CsPbI2.5Br0.5 perovskite solar cells yielding high efficiency and stable performance.J Mater Chem A2023;11:21312-21

[37]

Xiang S,Li W.Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum.ACS Energy Lett2018;3:1824-31

[38]

Duan C,Zhang M.Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells.Adv Energy Mater2020;10:2000691

[39]

Yue Y,Zhang W,Zhou H.Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance.Angew Chem Int Ed2024;63:e202315717

[40]

Wang X,Liu X.Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic.Angew Chem Int Ed2020;59:13354-61

[41]

Saparbaev A,Kuvondikov V.High-performance CsPbI3 perovskite solar cells without additives in air condition.Solar Energy2021;228:405-12

[42]

Wang T,Chen Y.Stitching perovskite grains with perhydropoly(Silazane) anti-template-agent for high-efficiency and stable solar cells fabricated in ambient air.Energy Environ Mater2023;6:e12554

[43]

Luo P,Zhou S.Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells.J Phys Chem Lett2016;7:3603-8

[44]

Wang Y,Zhang T.The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant?.Angew Chem Int Ed2019;58:16691-6

[45]

Chang X,Fan Y.Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy.Adv Mater2020;32:e2001243

[46]

Fu S,Wan J,Song W.In situ stabilized CsPbI3 for air-fabricated inverted inorganic perovskite photovoltaics with wide humidity operating window.Adv Funct Mater2022;32:2111116

[47]

Fu S,Li X,Song W.Humidity-assisted chlorination with solid protection strategy for efficient air-fabricated inverted CsPbI3 perovskite solar cells.ACS Energy Lett2021;6:3661-8

[48]

Yang S,Liu Z.A key 2D intermediate phase for stable high-efficiency CsPbI2Br perovskite solar cells.Adv Energy Mater2022;12:2103019

[49]

Fu S,Le J.Tailoring defects regulation in air-fabricated CsPbI3 for efficient inverted all-inorganic perovskite solar cells with Voc of 1.225 V.ACS Appl Mater Interfaces2022;14:30937-45

[50]

Xu S,Huang Z.Dual-functional quantum dot seeding growth of high-quality air-processed CsPbI2Br film for carbon-based perovskite solar cells.Solar RRL2022;6:2100989

[51]

Lu C,Guo X.Efficient inverted CsPbI3 perovskite solar cells fabricated in common air.Chem Eng J2023;452:139495

[52]

Wang J,Duan Y et al.21.15%-efficiency and stable γ -CsPbI3 perovskite solar cells enabled by an acyloin ligand.Adv Mater2023;35:2210223

[53]

Mali SS,Shao J.Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency.Nat Energy2023;8:989-1001

[54]

Chen R,Wu B.Moisture-tolerant and high-quality α-CsPbI3 films for efficient and stable perovskite solar modules.J Mater Chem A2020;8:9597-606

[55]

Yoon SM,Kim JB,Lee KS.Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells.Joule2021;5:183-96

[56]

Fu S,Guo X.Polishing the lead-poor surface for efficient inverted CsPbI3 perovskite solar cells.Adv Mater2022;34:e2205066

[57]

Li T,Wang K.Interface engineering with formamidinium salts for improving ambient-processed inverted CsPbI3 photovoltaic performance: intermediate- vs post-treatment.ACS Appl Mater Interfaces2023;15:51350-9

[58]

Guo X,Zhang W.In situ surface sulfidation of CsPbI3 for inverted perovskite solar cells.ACS Energy Lett2024;9:329-35

[59]

Qiu J,Zhang M.Dipolar chemical bridge induced CsPbI3 perovskite solar cells with 21.86 % efficiency.Angew Chem Int Ed2024;63:e202401751

[60]

Wang Y,Ono LK.Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%.Science2019;365:591-5

[61]

Wang K,Chen Y.Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells.J Mater Sci Technol2022;114:165-71

[62]

Jeong W,Ma S.Unraveling the antisolvent bathing effect on CsPbI3 crystallization under ambient conditions.Adv Funct Mater2022;32:2207342

[63]

Mali SS,Rondiya SR.Terbium-doped and dual-passivated γ-CsPb(I1-xBrx)3 inorganic perovskite solar cells with improved air thermal stability and high efficiency.Adv Mater2022;34:e2203204

[64]

Rico-yuson CA,Kumar S,Bora T.Sequential dip-coating of CsPbBr3 perovskite films in ambient conditions and their photovoltaic performance.J Mater Sci2022;57:10285-98

[65]

Wang K,Xu Z.In-situ hot oxygen cleansing and passivation for all-inorganic perovskite solar cells deposited in ambient to breakthrough 19% efficiency.Adv Funct Mater2021;31:2101568

[66]

Du Y,Chang X.Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells.Adv Mater2022;34:e2106750

[67]

Dong C,Zhao Y,Chang L.A green anti-solvent process for high performance carbon-based CsPbI2Br all-inorganic perovskite solar cell.Solar RRL2018;2:1800139

[68]

Wang Y,Zhang P.Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells.Nano Energy2017;39:616-25

[69]

Xu W,Liu P.In situ-fabricated perovskite nanocrystals for deep-blue light-emitting diodes.J Phys Chem Lett2020;11:10348-53

[70]

Zhang F.Additive engineering for efficient and stable perovskite solar cells.Adv Energy Mater2020;10:1902579

[71]

Patil JV,Hong CK.Reducing defects of all-inorganic γ-CsPbI2Br thin films by ethylammonium bromide additives for efficient perovskite solar cells.ACS Appl Mater Interfaces2022;14:25576-83

[72]

Jiang Y,Du H.Organic-inorganic hybrid nature enables efficient and stable CsPbI3-based perovskite solar cells.Joule2023;7:2905-22

[73]

Bai S,Li C.Planar perovskite solar cells with long-term stability using ionic liquid additives.Nature2019;571:245-50

[74]

Yang D,Ren X.Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport.Adv Mater2016;28:5206-13

PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

/