Polymer-based electrolytes for high-voltage solid-state lithium batteries

Zixuan Wang , Jianxiong Chen , Jialong Fu , Zhiyong Li , Xin Guo

Energy Materials ›› 2024, Vol. 4 ›› Issue (4) : 400050

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (4) :400050 DOI: 10.20517/energymater.2023.130
Review

Polymer-based electrolytes for high-voltage solid-state lithium batteries

Author information +
History +
PDF

Abstract

Increasing the charging cut-off voltage of lithium batteries is a feasible method to enhance the energy density. However, when batteries operate at high voltages (> 4.3 V), the degradation of liquid organic carbonate electrolyte is accelerated and may cause safety hazards. Polymer-based electrolytes with inherently high safety and good electrochemical stability can prevent the electrolyte degradation in high-voltage solid-state lithium batteries. This paper provides a comprehensive and in-depth review of the design strategies, recent developments, and scientific challenges associated with polymer-based electrolytes for high-voltage applications. Emphases are placed on the interfacial compatibility between electrolytes and cathodes, such as mechanical contacts and interface chemical stability, which are critical to the lifespan of high-voltage lithium batteries. Moreover, guidelines for the future development of high-voltage solid-state lithium batteries are also discussed.

Keywords

Polymer-based electrolyte / interfacial compatibility / high-voltage stability / high energy density / lithium battery

Cite this article

Download citation ▾
Zixuan Wang, Jianxiong Chen, Jialong Fu, Zhiyong Li, Xin Guo. Polymer-based electrolytes for high-voltage solid-state lithium batteries. Energy Materials, 2024, 4(4): 400050 DOI:10.20517/energymater.2023.130

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao Y,Zhang C,Ma Z.Lithium-ion battery aging mechanisms and life model under different charging stresses.J Power Sources2017;356:103-14

[2]

Zhou J,Liu J,Zhang L.High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte.Nano Lett2019;19:3066-73

[3]

Zhao Q,Stalin S,Archer LA.Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries.Nat Energy2019;4:365-73

[4]

Liu N,Zhao J.A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.Nat Nanotechnol2014;9:187-92

[5]

Jung JW,Shin J,Kim ID.Glassy metal alloy nanofiber anodes employing graphene wrapping layer: toward ultralong-cycle-life lithium-ion batteries.ACS Nano2015;9:6717-27

[6]

Li J,Chi M,Dudney NJ.Solid electrolyte: the key for high-voltage lithium batteries.Adv Energy Mater2015;5:1401408

[7]

Janek J.A solid future for battery development.Nat Energy2016;1:16141

[8]

Manthiram A,Wang S.Lithium battery chemistries enabled by solid-state electrolytes.Nat Rev Mater2017;2:16103

[9]

Wright PV.Electrical conductivity in ionic complexes of poly(ethylene oxide).Brit Poly J1975;7:319-27

[10]

Fenton D,Wright P.Complexes of alkali metal ions with poly(ethylene oxide).Polymer1973;14:589

[11]

Armand M.Polymer solid electrolytes - an overview.Solid State Ion1983;9-10:745-54

[12]

Sun C,Gong Y,Zhang J.Recent advances in all-solid-state rechargeable lithium batteries.Nano Energy2017;33:363-86

[13]

Feuillade G.Ion-conductive macromolecular gels and membranes for solid lithium cells.J Appl Electrochem1975;5:63-9

[14]

Song J,Wan C.Review of gel-type polymer electrolytes for lithium-ion batteries.J Power Sources1999;77:183-97

[15]

Cheng X,Zhao Y,Peng H.Gel polymer electrolytes for electrochemical energy storage.Adv Energy Mater2018;8:1702184

[16]

Ren W,Fu X.Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives.Energy Stor Mater2021;34:515-35

[17]

Chen S,Fan J,Golberg D.Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes.J Mater Chem A2018;6:11631-63

[18]

Xu L,Cheng Y.Interfaces in solid-state lithium batteries.Joule2018;2:1991-2015

[19]

Weston J.Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes.Solid State Ion1982;7:75-9

[20]

Croce F,Persi L.Nanocomposite polymer electrolytes for lithium batteries.Nature1998;394:456-8

[21]

Yue L,Zhang J.All solid-state polymer electrolytes for high-performance lithium ion batteries.Energy Stor Mater2016;5:139-64

[22]

Yoshida K,Kazue Y.Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes.J Am Chem Soc2011;133:13121-9

[23]

Wetjen M,Joost M,Winter M.Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials.J Power Sources2014;246:846-57

[24]

Nie K,Qiu J.Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode.ACS Energy Lett2020;5:826-32

[25]

Yang X,Gao X.Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group?.Energy Environ Sci2020;13:1318-25

[26]

Pandian S,Tagade P,Mayya K.Electrochemical stability of ether based salt-in-polymer based electrolytes: computational investigation of the effect of substitution and the type of salt.J Power Sources2018;393:204-10

[27]

Zhang Z,Wu H.Fluorinated electrolytes for 5 V lithium-ion battery chemistry.Energy Environ Sci2013;6:1806-10

[28]

Sun H,Huang Q.Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries.Angew Chem Int Ed2021;60:18335-43

[29]

Xie X,He S.Influencing factors on Li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates and polymalonates.Angew Chem Int Ed2023;62:e202218229

[30]

Tang L,Zhang Z.Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries.Nat Commun2023;14:2301 PMCID:PMC10121557

[31]

Lv Z,Zhang S.Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries.Energy Stor Mater2021;37:215-23

[32]

Dong T,Hu R.A rigid-flexible coupling poly(vinylene carbonate) based cross-linked network: a versatile polymer platform for solid-state polymer lithium batteries.Energy Stor Mater2022;50:525-32

[33]

Li S,Shen L.Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries.Adv Sci2020;7:1903088 PMCID:PMC7055568

[34]

Meng N,Lian F.Particles in composite polymer electrolyte for solid-state lithium batteries: a review.Particuology2022;60:14-36

[35]

Pan J,Wang N,Dou S.Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes.Energy Environ Sci2022;15:2753-75

[36]

Zhu Y,Chen H,Li B.High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries.J Mater Chem A2019;7:6832-9

[37]

Yu J,Li S,Zhu J.Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte.Small2019;15:e1902729

[38]

Huang H,Zhong H.Nano-SiO2-embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium-sulfur batteries.J Mater Chem A2018;6:9539-49

[39]

Zhao XG,Park J.Hybrid polymer electrolyte composite with SiO2 nanofiber filler for solid-state dye-sensitized solar cells.Compos Sci Technol2014;103:100-5

[40]

Zhai H,Xu B.Stabilizing polyether electrolyte with a 4 V metal oxide cathode by nanoscale interfacial coating.ACS Appl Mater Interfaces2019;11:28774-80

[41]

Arya A.Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films.J Phys D Appl Phys2018;51:045504

[42]

Cao J,He X.In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries.J Mater Chem A2013;1:5955-61

[43]

Masoud EM,Bayoumy WA.Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: an efficient polymer electrolyte for lithium ion batteries application.J Mol Liq2018;260:237-44

[44]

Dhatarwal P,Sengwa R.Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO-PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries.Compos Commun2018;10:11-7

[45]

Lv F,Shi L.Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries.J Power Sources2019;441:227175

[46]

Zhou Q,Dong S,Cui G.Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries.Adv Mater2019;31:e1902029

[47]

Wang Z,Chen L.Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes.Electrochem Solid State Lett2003;6:E40

[48]

Wang Y,Lin Z.Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery.Nano Energy2022;96:107105

[49]

Yang H,Jing M.In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries (Adv. Energy Mater. 39/2022).Adv Energy Mater2022;12:2201762

[50]

Fu K,Hitz GT.Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries.Energy Environ Sci2017;10:1568-75

[51]

Xie H,Fu K.Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose.Adv Energy Mater2018;8:1703474

[52]

Bae J,Zhang J.A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte.Angew Chem Int Ed2018;57:2096-100

[53]

Liu S,Ba D.Filler-integrated composite polymer electrolyte for solid-state lithium batteries.Adv Mater2023;35:e2110423

[54]

Xu R,Zhang R.Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries.Adv Mater2019;31:e1808392

[55]

Li Y,Xu H.Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries.Angew Chem Int Ed2017;56:753-6

[56]

Choi J,Yu J,Lee S.Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix.J Power Sources2015;274:458-63

[57]

Cai D,Xiang J.A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery.Chem Eng J2022;435:135030

[58]

Reddy MV,Mauger A.Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: a review.Nanomaterials2020;10:1606 PMCID:PMC7466729

[59]

Xu H,Shi J.High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide).Proc Natl Acad Sci USA2019;116:18815-21 PMCID:PMC6754604

[60]

Ma C,Liu X,Wang Y.In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives.InfoMat2022;4:e12232

[61]

Zhu Y,Shi Y,Hou Y.A composite gel polymer electrolyte with high performance based on poly(vinylidene fluoride) and polyborate for lithium ion batteries.Adv Energy Mater2014;4:1300647

[62]

Zhou D,Tkacheva A,Wang G.Polymer electrolytes for lithium-based batteries: advances and prospects.Chem2019;5:2326-52

[63]

Li G,Zhang P,Wu Y.Research on a gel polymer electrolyte for Li-ion batteries.Pure Appl Chem2008;80:2553-63

[64]

Sun Q,Ma Y.Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent.Adv Mater2023;35:e2300998

[65]

Chen M,Ding Z.Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries.ACS Energy Lett2021;6:1280-9

[66]

Zeng Y,Shen X.New UV-initiated lithiated-interpenetrating network gel-polymer electrolytes for lithium-metal batteries.J Power Sources2022;541:231681

[67]

Gao X,Yang Y.High-performance and highly safe solvate ionic liquid-based gel polymer electrolyte by rapid UV-curing for lithium-ion batteries.ACS Appl Mater Interfaces2022;14:43397-406

[68]

Li S,Li N.Porosity development at Li-rich layered cathodes in all-solid-state battery during in situ delithiation.Nano Lett2022;22:4905-11

[69]

Wang L,Chen B.In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries.Nat Commun2020;11:5889 PMCID:PMC7674427

[70]

Koerver R,Aygün I.Redox-active cathode interphases in solid-state batteries.J Mater Chem A2017;5:22750-60

[71]

Koerver R,Leichtweiß T.Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes.Chem Mater2017;29:5574-82

[72]

Zhao CZ,Liu X.Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode.Adv Mater2020;32:e1905629

[73]

Yan Y,Dong S.In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery.Adv Sci2021;8:2003887 PMCID:PMC8097327

[74]

Li Z,Guo X.High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes.Energy Stor Mater2020;29:149-55

[75]

Lu X,Bertei A.Microstructural evolution of battery electrodes during calendering.Joule2020;4:2746-68

[76]

Judez X,Li C,Zhang H.Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes.Joule2018;2:2208-24

[77]

Zhao Q,Li S,Archer LA.Solid-state polymer electrolytes stabilized by task-specific salt additives.J Mater Chem A2019;7:7823-30

[78]

Besli MM,Kuppan S.Mesoscale chemomechanical interplay of the LiNi0.8Co0.15Al0.05O2 cathode in solid-state polymer batteries.Chem Mater2019;31:491-501

[79]

Lu X,Finegan DP.3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling.Nat Commun2020;11:2079 PMCID:PMC7190643

[80]

Yang L,Xue W.Anomalous thermal decomposition behavior of polycrystalline LiNi0.8Mn0.1Co0.1O2 in PEO-based solid polymer electrolyte.Adv Funct Mater2022;32:2200096

[81]

Zhu GR,Liu QS.Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries.Nat Commun2023;14:4617 PMCID:PMC10394022

[82]

An H,Deng B.Eliminating local electrolyte failure induced by asynchronous reaction for high-loading and long-lifespan all-solid-state batteries.Adv Funct Mater2023;33:2305186

[83]

Liu Y,Lin Y.Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery.Adv Funct Mater2021;31:2104863

[84]

Wang L,Wang T.Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers.Adv Energy Mater2018;8:1801528

[85]

Liang L,Chen X.Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries.Chem Eng J2021;421:130000

[86]

Didwal PN,Nguyen AG,Lee GH.Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly(propylene carbonate) based solid electrolyte.Adv Sci2022;9:e2105448 PMCID:PMC9069196

[87]

Chen Y,Wang S.Durable and adjustable interfacial engineering of polymeric electrolytes for both stable Ni-rich cathodes and high-energy metal anodes.Adv Mater2023;35:e2300982

[88]

Ni L,Di A.Challenges and strategies towards single-crystalline Ni-rich layered cathodes.Adv Energy Mater2022;12:2201510

[89]

Liu K,Lee HR.Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer.J Am Chem Soc2017;139:4815-20

[90]

Yu X,Ma J,Zhou X.Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries.Adv Energy Mater2020;10:1903939

[91]

Ding P,Lin Z.Molecular self-assembled ether-based polyrotaxane solid electrolyte for lithium metal batteries.J Am Chem Soc2023;145:1548-56

[92]

Li X,Tian Y.Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries.Nano Energy2021;87:106214

[93]

Zhou T,Choi JW.Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries.Angew Chem Int Ed2021;60:22791-6 PMCID:PMC8518060

[94]

Chen N,Xing Y.Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries.Energy Environ Sci2017;10:1660-7

[95]

Lu Y,Yuan H,Huang J.Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies.Adv Funct Mater2021;31:2009925

[96]

Kim J,Cha H.A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries.Energy Environ Sci2018;11:1449-59

[97]

Wang H,Zou R.Metal-organic frameworks for energy applications.Chem2017;2:52-80

[98]

Qian J,Zhang M.Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield.Nano Energy2019;60:866-74

[99]

Huo H,Zhang T.Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries.Energy Stor Mater2019;18:59-67

[100]

Cui S,Yang Y.Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries.ACS Energy Lett2022;7:42-52

[101]

Ma Q,Wu A.Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries.Adv Energy Mater2023;13:2203892

[102]

Yang F,Liu T.Fluorinated strategies among all-solid-state lithium metal batteries from microperspective.Small Struct2023;4:2200122

[103]

Qi S,Gao Y.Enabling scalable polymer electrolyte with dual-reinforced stable interface for 4.5 V lithium-metal batteries.Adv Mater2023;35:e2304951

[104]

Liu FQ,Yin YX.Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries.Sci Adv2018;4:eaat5383 PMCID:PMC6173527

[105]

Lou S,Zhang F.Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries.Nat Commun2020;11:5700 PMCID:PMC7658997

[106]

Zhang N,Zhang S.Critical review on low-temperature Li-ion/metal batteries.Adv Mater2022;34:e2107899

[107]

Li Z,Weng S,Wang X.Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries.Nat Commun2023;14:482 PMCID:PMC9886912

[108]

Zhang D,Wu Y.In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries.Adv Sci2022;9:e2104277 PMCID:PMC9036025

[109]

Li T,Shi P.Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries.Joule2019;3:2647-61

[110]

Liang JY,Zeng XX.Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries.Angew Chem Int Ed2020;59:6585-9

[111]

An SJ,Daniel C,Nagpure S.The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling.Carbon2016;105:52-76

[112]

Zhang Z,Xu R.Capturing the swelling of solid-electrolyte interphase in lithium metal batteries.Science2022;375:66-70

[113]

Tu S,Zhang Y.Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid-electrolyte interphase.Nat Energy2023;8:1365-74

[114]

Heiskanen SK,Lucht BL.Generation and evolution of the solid electrolyte interphase of lithium-ion batteries.Joule2019;3:2322-33

[115]

Dong H,Wang V.Effect of temperature on formation and evolution of solid electrolyte interphase on Si@Graphite@C anodes.J Energy Chem2022;64:190-200

[116]

Rezqita A,Foelske A,Trifonova A.The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries.Electrochim Acta2017;247:600-9

[117]

Kobayashi Y,Mita Y.High reversible capacities of graphite and SiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries.J Power Sources2008;185:542-8

[118]

Aiken CP,Petibon R,Paulsen JM.A survey of in situ gas evolution during high voltage formation in Li-ion pouch cells.J Electrochem Soc2015;162:A760-7

[119]

Papp JK,Kaufman LA.A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials.Electrochim Acta2021;368:137505

[120]

Ren D,Lu L.An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery.J Power Sources2017;364:328-40

[121]

Browning KL,Unocic RR,Veith GM.Gas evolution from cathode materials: a pathway to solvent decomposition concomitant to SEI formation.J Power Sources2013;239:341-6

[122]

Han JG,Lee Y.Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries.Adv Mater2019;31:e1804822

[123]

Mahne N,McCloskey BD.Electrochemical oxidation of lithium carbonate generates singlet oxygen.Angew Chem Int Ed2018;57:5529-33 PMCID:PMC5947587

[124]

Zheng X,Wang Z.Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery.Electrochim Acta2016;191:832-40

[125]

Jung R,Maglia F,Gasteiger HA.Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries.J Electrochem Soc2017;164:A1361-77

[126]

Pham HQ,Tarik M.Correlating the initial gas evolution and structural changes to cycling performance of Co-free Li-rich layered oxide cathode.J Power Sources2022;527:231181

[127]

Fell CR,Hallac PB,Sisk B.Investigation of the gas generation in lithium titanate anode based lithium ion batteries.J Electrochem Soc2015;162:A1916-20

[128]

Kanamura K,Shiraishi S.Studies on electrochemical oxidation of nonaqueous electrolytes using in situ FTIR spectroscopy: I. The effect of type of electrode on on-set potential for electrochemical oxidation of propylene carbonate containing 1.0 mol dm-3.J Electrochem Soc1995;142:1383-9

[129]

Kim Y,Warner JH.Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries.ACS Energy Lett2021;6:941-8

[130]

Jiao S,Cao R.Stable cycling of high-voltage lithium metal batteries in ether electrolytes.Nat Energy2018;3:739-46

[131]

Jung R,Maglia F,Gasteiger HA.Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon.J Phys Chem Lett2017;8:4820-5

[132]

Zhu Z,Li Y.A surface Se-substituted LiCo [O2-δSeδ>] cathode with ultrastable high-voltage cycling in pouch full-cells.Adv Mater2020;32:e2005182

[133]

Luo K,Hao R.Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.Nat Chem2016;8:684-91

[134]

Xu K.Electrolytes and interphases in Li-ion batteries and beyond.Chem Rev2014;114:11503-618

[135]

Li W,Chen M.AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery.Electrochim Acta2014;139:104-10

[136]

Zhao K,Yu Y.Ultrathin surface coating enables stabilized zinc metal anode.Adv Mater Inter2018;5:1800848

[137]

Zhang X,Li L.Structural and electrochemical study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD.Adv Energy Mater2013;3:1299-307

[138]

Schiele A,Mazilkin A.Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: investigation into volume expansion, gas evolution, and particle fracture.ACS Omega2018;3:16706-13 PMCID:PMC6643814

[139]

Tong X,Wu N,Li J.High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery.Adv Energy Mater2021;11:2100151

[140]

Chang C,Li R.Self-healing single-ion-conductive artificial polymeric solid electrolyte interphases for stable lithium metal anodes.Nano Energy2022;93:106871

[141]

Fu C,Grissa R.A polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries.Adv Energy Mater2022;12:2200412

[142]

Yao M,Pan S,Zhang S.An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery.Adv Energy Mater2023;13:2203640

[143]

Li H,Wu X,Lian F.Developing “polymer-in-salt” high voltage electrolyte based on composite lithium salts for solid-state Li metal batteries.Adv Funct Mater2021;31:2103049

[144]

Yao Z,Li X.3D poly(vinylidene fluoride-hexafluoropropylen) nanofiber-reinforced PEO-based composite polymer electrolyte for high-voltage lithium metal batteries.Electrochim Acta2022;404:139769

[145]

Huang T,Ye X.A cerium-doped NASICON chemically coupled poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries.J Energy Chem2022;73:311-21

[146]

Chen L,Ma J.In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries.Nano Energy2022;100:107470

[147]

Ma X,Wu J.Polyethylene-supported ultra-thin polyvinylidene fluoride/hydroxyethyl cellulose blended polymer electrolyte for 5 V high voltage lithium ion batteries.J Mater Chem A2018;6:1496-503

[148]

Duan H,Chen WP.Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries.Adv Mater2019;31:e1807789

[149]

He F,Zhang X,Luo J.High energy density solid state lithium metal batteries enabled by Sub-5 µm solid polymer electrolytes.Adv Mater2021;33:e2105329

[150]

Li J,Li R.Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries.ACS Appl Polym Mater2022;4:7144-51

[151]

Zhu M,Liu B.Multifunctional polymer electrolyte improving stability of electrode-electrolyte interface in lithium metal battery under high voltage.J Membr Sci2019;588:117194

[152]

Gong Y,Xin M.Ultra-thin and high-voltage-stable Bi-phasic solid polymer electrolytes for high-energy-density Li metal batteries.Nano Energy2024;119:109054

[153]

Wang H,Zhang K.A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery.Energy Environ Sci2022;15:5149-58

[154]

Yang T,Lou J.Stable LiF-rich electrode-electrolyte interface toward high-voltage and high-energy-density lithium metal solid batteries.Small2023;19:e2300494

[155]

Wang Y,Li Z,Li Y.In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries.Energy Stor Mater2022;45:474-83

[156]

Yin X,Lin Z.A propanesultone-based polymer electrolyte for high-energy solid-state lithium batteries with lithium-rich layered oxides.J Mater Chem A2023;11:19118-27

[157]

Li Z,Zheng S,Guo X.Self-healing polymer electrolyte for dendrite-free Li metal batteries with ultra-high-voltage Ni-rich layered cathodes.Small2022;18:e2200891

[158]

Jing C,Liu D.Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable, high-voltage lithium metal batteries.Sci Bull2024;69:209-17

[159]

Zhu J,Zhao R.In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries.Energy Stor Mater2023;57:92-101

[160]

Zhou G,Ciucci F.In situ prepared all-fluorinated polymer electrolyte for energy-dense high-voltage lithium-metal batteries.Energy Stor Mater2023;55:642-51

[161]

Fang Z,Liu H.Boosting the oxidative potential of polyethylene glycol-based polymer electrolyte to 4.36 V by Spatially restricting hydroxyl groups for high-voltage flexible lithium-ion battery applications.Adv Sci2021;8:e2100736 PMCID:PMC8373090

[162]

Zhu J,Zhang J.Long-cycling and high-voltage solid state lithium metal batteries enabled by fluorinated and crosslinked polyether electrolytes.Angew Chem Int Ed2024;63:e202400303

[163]

Wang A,Zhao Z,Luo J.In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries.Adv Funct Mater2022;32:2201861

[164]

Wang F,Guo Y.In situ high-performance gel polymer electrolyte with dual-reactive cross-linking for lithium metal batteries.Energy Environ Mater2024;7:e12497

[165]

Wu J,Liu Q.A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries.Nat Commun2021;12:5746 PMCID:PMC8484457

[166]

Wang C,Liang Y.Molecular-level designed polymer electrolyte for high-voltage lithium-metal solid-state batteries.Adv Funct Mater2023;33:2209828

[167]

Liu D,Lin Z,Dai K.Organoboron- and cyano-grafted solid polymer electrolytes boost the cyclability and safety of high-voltage lithium metal batteries.ACS Appl Mater Interfaces2023;15:21112-22

[168]

Hu R,Zhang H.A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO2/Li metal batteries.Small2020;16:e1907163

[169]

Dong T,Xu G.A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery.Energy Environ Sci2018;11:1197-203

[170]

Liang JY,Zhang XD.Engineering janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries.J Am Chem Soc2019;141:9165-9

[171]

Zhang H,Du X.Cyanoethyl cellulose-based eutectogel electrolyte enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries.Carbon Energy2022;4:1093-106

PDF

244

Accesses

0

Citation

Detail

Sections
Recommended

/