Functionalized polypropylene separator coated with polyether/polyester blend for high-performance lithium metal batteries

Weixin Ye , Zixin Fan , Xingping Zhou , Zhigang Xue

Energy Materials ›› 2024, Vol. 4 ›› Issue (4) : 400049

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (4) :400049 DOI: 10.20517/energymater.2023.129
Article

Functionalized polypropylene separator coated with polyether/polyester blend for high-performance lithium metal batteries

Author information +
History +
PDF

Abstract

Commercial polyolefin separators used in lithium metal batteries (LMBs) have the disadvantages of insufficient thermal stability and poor wettability with electrolytes, which causes bad safety and battery performance. Poly(ε-caprolactone) (PCL)-based electrolytes have drawn widespread attention in the field of polymer electrolytes owing to their electrochemical stability and high lithium-ion transference number. This work proposes a strategy of functionalizing commercial polypropylene (PP) separator coated by blending PCL (Mw ~ 50,000) and poly(ethylene oxide) (PEO, MV ~ 600,000). Compared to commercial PP separators, PP-blended PEO60w/PCL5w separators possess better wettability with electrolytes and electrochemical performances. The initial discharge specific capacity of LiFePO4-based LMBs assembled with PP-blended PEO60w/PCL5w separators reaches 144 mAh g-1 (1C) and 103 mAh g-1 (5C) at room temperature, respectively. Notably, Li/PP-blended PEO60w/PCL5w/LiFePO4 shows an improved capacity retention rate of 77% after 800 cycles, confirming that the functionalized separator with coated PEO/PCL blend has great potential for application in the field of LMBs.

Keywords

Lithium metal batteries / polyolefin separators / polymer blend / coating / battery performance

Cite this article

Download citation ▾
Weixin Ye, Zixin Fan, Xingping Zhou, Zhigang Xue. Functionalized polypropylene separator coated with polyether/polyester blend for high-performance lithium metal batteries. Energy Materials, 2024, 4(4): 400049 DOI:10.20517/energymater.2023.129

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan M,Fan M.In situ derived mixed ion/electron conducting layer on top of a functional separator for high-performance, dendrite-free rechargeable lithium-metal batteries.Adv Funct Mater2023;34:2301638

[2]

Seo J,Kim M,Yoon S.Recent progress of advanced functional separators in lithium metal batteries.Small2024;e2312132

[3]

Xue Z,Xie X.Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.J Mater Chem A2015;3:19218-53

[4]

Wang J,Zhao Q,Xue Z.Structure code for advanced polymer electrolyte in lithium-ion batteries.Adv Funct Mater2021;31:2008208

[5]

Zhang Y,Xue Z.Electrode protection and electrolyte optimization via surface modification strategy for high-performance lithium batteries.Adv Funct Mater2024;34:2311925

[6]

Wu F,Yu Y.Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.Chem Soc Rev2020;49:1569-614

[7]

Lopez J,Cui Y.Designing polymers for advanced battery chemistries.Nat Rev Mater2019;4:312-30

[8]

Terella A,Rahmanipour M.Functional separators for the batteries of the future.J Power Sources2020;449:227556

[9]

Li D,Feng K,Zhang H.Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries.J Membr Sci2017;530:125-31

[10]

Francis CFJ,Best AS.Lithium-ion battery separators for ionic-liquid electrolytes: a review.Adv Mater2020;32:e1904205

[11]

Yu J,Liu B,Qi S.A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery.Chem Eng J2022;442:136314

[12]

Liu H,Ziv B.Elucidating the Li-ion battery performance benefits enabled by multifunctional separators.ACS Appl Energy Mater2018;1:1878-82

[13]

Song YZ,Yin X.Effect of polyphenol-polyamine treated polyethylene separator on the ionic conduction and interface properties for lithium-metal anode batteries.J Electroanal Chem2018;816:68-74

[14]

Song YZ,Yuan JJ.Fast assemble of polyphenol derived coatings on polypropylene separator for high performance lithium-ion batteries.J Electroanal Chem2018;808:252-8

[15]

Wang H,Wu C,Chen S.Pyrogallic acid coated polypropylene membranes as separators for lithium-ion batteries.J Mater Chem A2015;3:20535-40

[16]

Zhang SS.A review on the separators of liquid electrolyte Li-ion batteries.J Power Sources2007;164:351-64

[17]

Fang LF,Zhu BK.Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries.J Membr Sci2013;448:143-50

[18]

Cao C,Liu W,Li L.Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries.J Power Sources2014;248:224-9

[19]

Jiang F,Yin L,Yu Q.Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries.J Membr Sci2016;510:1-9

[20]

Lee JY,Moon SH.Flame retardant coated polyolefin separators for the safety of lithium ion batteries.Korean J Chem Eng2016;33:285-9

[21]

Lagadec MF,Wood V.Characterization and performance evaluation of lithium-ion battery separators.Nat Energy2019;4:16-25

[22]

Sohn JY,Shin J.PVDF-HFP/PMMA-coated PE separator for lithium ion battery.J Solid State Electrochem2012;16:551-6

[23]

Kim G,Lee H,Lee D.Roll-to-roll gravure coating of PVDF on a battery separator for the enhancement of thermal stability.Polymers2023;15:4108 PMCID:PMC10610101

[24]

Chen Y,Zhang L.Oriented carbon fiber/PEO functional modified polyethylene separator for high-performance lithium metal batteries.Mater Lett2023;332:133511

[25]

Jeong YB.The role of an adhesive gel-forming polymer coated on separator for rechargeable lithium metal polymer cells.Solid State Ion2005;176:47-51

[26]

Wang Z,Dong N.Novel ZrO2@Polyimde nano-microspheres-coated polyethylene separators for high energy density and high safety Li-ion battery.Mater Today Energy2022;30:101155

[27]

Wang Y,Song Z.Application of PVDF organic particles coating on polyethylene separator for lithium ion batteries.Materials2019;12:3125 PMCID:PMC6804153

[28]

Tian L,Huang C,Zhang H.Gel hybrid copolymer of organic palygorskite and methyl methacrylate electrolyte coated onto Celgard 2325 applied in lithium ion batteries.J Appl Polym Sci2019;136:47970

[29]

Guo K,Shi Z,Xie X.One-step in situ polymerization: a facile design strategy for block copolymer electrolytes.Angew Chem Int Ed2023;62:e202213606

[30]

Zuo C,Zhang Y.Poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries.J Membr Sci2020;607:118132

[31]

Eriksson T,Yue M.Effects of nanoparticle addition to poly(ε-caprolactone) electrolytes: crystallinity, conductivity and ambient temperature battery cycling.Electrochim Acta2019;300:489-96

[32]

Li S,Chen G.A self-catalyzed strategy towards facile fabrication of bottlebrush polyester-based solid polymer electrolytes.Energy Stor Mater2022;46:461-71

[33]

Di Carli M, Aurora A, Rinaldi A, Fiaschini N, Prosini PP. Preparation of electrospun membranes and their use as separators in lithium batteries.Batteries2023;9:201

[34]

Li Y,Bu H.Miktoarm PEG-PCL star copolymer (AB6) blend composite solid electrolyte for all-solid-state lithium metal battery.Macromolecules2023;56:7921-30

[35]

Rosenwinkel MP,Mindemark J.Coordination effects in polymer electrolytes: fast Li+ transport by weak ion binding.J Phys Chem C2020;124:23588-96

[36]

Lee TK,Dzulkurnain NA,Mindemark J.Polyester-ZrO2 nanocomposite electrolytes with high Li transference numbers for ambient temperature all-solid-state lithium batteries.Batteries Supercaps2021;4:653-62

[37]

Sun M,Peng L.Ultrathin polymer electrolyte film prepared by in situ polymerization for lithium metal batteries.Mater Today Energy2021;21:100785

[38]

Mu X,Wang W.Design of compressible flame retardant grafted porous organic polymer based separator with high fire safety and good electrochemical properties.Chem Eng J2021;405:126946

[39]

Nainggolan G,Marpongahtun ,Dellyansyah .Promoting electrospun lignin/PEO nanofiber for high-performance CO filtration.J Nat Fibers2023;20:2160402

[40]

Bezerra GSN,Colbert DM,Geever J.Micro-injection moulding of PEO/PCL blend-based matrices for extended oral delivery of fenbendazole.Pharmaceutics2023;15:900 PMCID:PMC10051197

[41]

Huang X.Separator technologies for lithium-ion batteries.J Solid State Electrochem2011;15:649-62

[42]

Huang X,Li M,Dong P.Functionalized separator for next-generation batteries.Mater Today2020;41:143-55

[43]

Zhang Y,Song YZ.Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-Ion batteries and the role of the interfaces between separator and electrolyte.Electrochim Acta2018;275:25-31

[44]

Fan P,Marosz V.High performance composite polymer electrolytes for lithium-ion batteries.Adv Funct Mater2021;31:2101380

[45]

Andersson EKW,Berggren E.Early-stage decomposition of solid polymer electrolytes in Li-metal batteries.J Mater Chem A2021;9:22462-71

[46]

Nitou MVM,Wan Z.LiFePO4 as a dual-functional coating for separators in lithium-ion batteries: a new strategy for improving capacity and safety.J Energy Chem2023;86:490-8

[47]

An H,Jo Y.Separator dependency on cycling stability of lithium metal batteries under practical conditions.Energy Environ Mater2023;6:e12397

[48]

Pei D,Huang S.Polycaprolactone-poly(vinylidene fluoride) blended composite polymer electrolyte with enhanced high power performance and interfacial stability for all-solid-state Li metal batteries.Chem Eng J2023;461:141899

[49]

Diederichsen KM,Mccloskey BD.Promising routes to a high Li+ transference number electrolyte for lithium ion batteries.ACS Energy Lett2017;2:2563-75

[50]

Li Y,Huang B.A high power density solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries.Electrochim Acta2022;424:140624

[51]

Liu J,Qie Y.Identifying lithium fluorides for promising solid-state electrolyte and coating material of high-voltage cathode.Mater Today Energy2021;21:100719

[52]

Rao QS,Huang XW,Liu YD.Assembly of MXene/PP separator and its enhancement for Ni-rich LiNi0.8Co0.1Mn0.1O2 electrochemical performance.Polymers2020;12:2192 PMCID:PMC7601763

PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

/