Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO2 intelligent utilization

San-Mei Wang , Xiaoshi Yuan , Shenghua Zhou , Xiaofang Li , Shu-Guo Han , Wenlie Lin , Lirong Zheng , Dong-Dong Ma , Qi-Long Zhu

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400032

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400032 DOI: 10.20517/energymater.2023.123
Article

Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO2 intelligent utilization

Author information +
History +
PDF

Abstract

Single-atomic-site catalysts have been demonstrated as promising candidates for electrochemical CO2 reduction reaction (eCO2RR). However, the universal construction strategies need to be further developed to synthesize the desired single-atomic-site catalysts with high eCO2RR activity for feasible CO2 utilization. Herein, a novel 2-methylimidazole-phthalocyanine-Ni (IM4NiPc) coordinatively modified ZIF-8 was rationally fabricated and applied to derive the single-atomic-Ni electrocatalyst (Ni-N-C-l), which is capable of delivering much improved activity for eCO2RR, compared to the pristine IM4NiPc immobilized onto ZIF-8-derived N-doped carbon surface, and is also comparable to the best reported catalysts. The satisfied Faradaic efficiency, current density and stability of CO2-to-CO electroconversion over Ni-N-C-l are shown to originate from the verified Ni-N4 configuration, particularly, reaching a CO Faradaic efficiency of 99% in a wide potential range. Moreover, based on the outstanding eCO2RR activity of Ni-N-C-l, we successfully realized the exemplary synthesis of amide polymer materials through CO-mediated electro/thermocatalytic cascade processes, demonstrating the feasibility of utilizing CO2 for material manufacturing. This finding is expected to provide useful insight on the precise design and rational synthesis of the novel single-atomic-site catalysts for future CO2 intelligent utilization.

Keywords

Single-atomic-site catalysts / electrochemical CO2 reduction reaction / electro/thermocatalytic cascade process / amide polymers

Cite this article

Download citation ▾
San-Mei Wang, Xiaoshi Yuan, Shenghua Zhou, Xiaofang Li, Shu-Guo Han, Wenlie Lin, Lirong Zheng, Dong-Dong Ma, Qi-Long Zhu. Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO2 intelligent utilization. Energy Materials, 2024, 4(3): 400032 DOI:10.20517/energymater.2023.123

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tomboc GM,Kwon T,Lee K.Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs.Adv Mater2020;32:e1908398

[2]

Zhu S,Li T.Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction.Adv Mater2021;33:e2005484

[3]

Chen S,Jiang W.MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis.Angew Chem Int Ed2022;61:e202114450

[4]

Ross MB,Li Y.Designing materials for electrochemical carbon dioxide recycling.Nat Catal2019;2:648-58

[5]

De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes?.Science2019;364:eaav3506

[6]

Khezri B,Pumera M.CO2 reduction: the quest for electrocatalytic materials.J Mater Chem A2017;5:8230-46

[7]

Lu Q,Zhou Y.A selective and efficient electrocatalyst for carbon dioxide reduction.Nat Commun2014;5:3242

[8]

Sa YJ,Lee SY,Lee U.Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction.Chem Soc Rev2020;49:6632-65

[9]

Wang G,Ding Y.Electrocatalysis for CO2 conversion: from fundamentals to value-added products.Chem Soc Rev2021;50:4993-5061

[10]

Jia S,Sun X.Electrochemical transformation of CO2 to value-added chemicals and fuels.CCS Chem2022;4:3213-29

[11]

Han SG,Zhu QL.Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction.Small Methods2021;5:e2100102

[12]

Liu J,Song R.Recent progress on single-atom catalysts for CO2 electroreduction.Mater Today2021;48:95-114

[13]

Wang X,Mao X.Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis.Adv Mater2020;32:e2000966

[14]

Hu C,Chen J.Main-group metal single-atomic regulators in dual-metal catalysts for enhanced electrochemical CO2 reduction.Small2022;18:e2201391

[15]

Ma D,Cao C.Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization.Energy Environ Sci2021;14:1544-52

[16]

Su X,Huang Y,Zhang T.Single-atom catalysis toward efficient CO2 conversion to CO and formate products.ACC Chem Res2019;52:656-64

[17]

Li X,Zhang J,Li Y.Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance.Nano Res2020;13:1842-55

[18]

Zhang E,Yu K.Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction.J Am Chem Soc2019;141:16569-73

[19]

Li J,Wu H.Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions.J Am Chem Soc2019;141:14515-9

[20]

Wang WL,Jiang B.Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene.Nano Lett2014;14:450-5

[21]

Han S,Zhou S.Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction.Appl Catal B Environ2021;283:119591

[22]

Pan F,Justiniano C.Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction.Appl Catal B Environ2018;226:463-72

[23]

Wang C,Wang Z,Liu Y.A promising single-atom Co-N-C catalyst for efficient CO2 electroreduction and high-current solar conversion of CO2 to CO.Appl Catal B Environ2022;304:120958

[24]

Li Y,Cheng W.Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO2 electroreduction.Adv Mater2022;34:e2105204

[25]

Yang J,Zhao C.In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts.Angew Chem Int Ed2018;57:14095-100

[26]

Zhao S,Zhou G.A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications.Adv Funct Mater2020;30:1906157

[27]

Li X,Tung C.Unveiling the in situ generation of a monovalent Fe(I) site in the single-Fe-atom catalyst for electrochemical CO2 reduction.ACS Catal2021;11:7292-301

[28]

Wang C,Ren H,Chou S.Diminishing the uncoordinated N species in Co-N-C catalysts toward highly efficient electrochemical CO2 reduction.ACS Catal2022;12:2513-21

[29]

Li X,Chen M.Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction.J Am Chem Soc2017;139:14889-92

[30]

Gu J,Bai L,Hu X.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO.Science2019;364:1091-4

[31]

Li S,Alfonso DR.Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters.Angew Chem Int Ed2021;60:6351-6

[32]

He Y,Shan W.Dynamically unveiling metal-nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites.Angew Chem Int Ed2021;60:9516-26

[33]

Liu S,Xiao J.Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes.ACS Catal2020;10:3158-63

[34]

Ma D.MOF-based atomically dispersed metal catalysts: recent progress towards novel atomic configurations and electrocatalytic applications.Coord Chem Rev2020;422:213483

[35]

Zhang Y,Yang W,Jiang HL.Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction.Angew Chem Int Ed2021;60:7607-11

[36]

Cheng H,Feng M.Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction.ACS Catal2021;11:12673-81

[37]

Yan C,Ye Y.Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction.Energy Environ Sci2018;11:1204-10

[38]

Li Y,Shan W.Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities.Energy Environ Sci2022;15:2108-19

[39]

Zeng L,Wang Y.Photoactivation of Cu centers in metal-organic frameworks for selective CO2 conversion to ethanol.J Am Chem Soc2020;142:75-9

[40]

Abdel-Mageed AM,Parlinska-Wojtan M,Yaghi OM.Highly active and stable single-atom Cu catalysts supported by a metal-organic framework.J Am Chem Soc2019;141:5201-10

[41]

Zhao C,Yao T.Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2.J Am Chem Soc2017;139:8078-81

[42]

Wang Y,Zhang X.Metal phthalocyanine-derived single-atom catalysts for selective CO2 electroreduction under high current densities.ACS Appl Mater Interfaces2020;12:33795-802

[43]

Park KS,Côté AP.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.Proc Natl Acad Sci USA2006;103:10186-91 PMCID:PMC1502432

[44]

Ma D,Zhou S.Molecularly dispersed heterogenized metallomacrocycles: molecular structure sensitivity of CO2 electrolysis.CCS Chem2023;5:1827-40

[45]

Jiao L,Wei W.Hierarchically ordered porous superstructure embedded with readily accessible atomic pair sites for enhanced CO2 electroreduction.Appl Catal B Environ2023;330:122638

[46]

Cao C,Zuo S.Si Doping-induced electronic structure regulation of single-atom Fe sites for boosted CO2 electroreduction at low overpotentials.Research2023;6:0079 PMCID:PMC10017332

[47]

Ma D,Cao C,Wu X.Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine.Appl Catal B Environ2020;264:118530

[48]

Cheng H,Li X.Zeolitic imidazole framework-derived FeN5-doped carbon as superior CO2 electrocatalysts.J Catal2021;395:63-9

[49]

Zheng T,Ta N.Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst.Joule2019;3:265-78

[50]

Liu C,Sun K.Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window.Chem2021;7:1297-307

[51]

Jiao L,Wan G.Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures.Angew Chem Int Ed2020;59:20589-95

[52]

Petraki F,Kennou S.The electronic structure of Ni-phthalocyanine/metal interfaces studied by X-ray and ultraviolet photoelectron spectroscopy.Organic Electronics2007;8:522-8

[53]

Wang X,Zhao X.Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2.Angew Chem Int Ed2018;57:1944-8

[54]

Boppella R,Kim Y.Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis.Adv Funct Mater2022;32:2202351

[55]

Yang HB,Liu S.Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction.Nat Energy2018;3:140-7

[56]

Jiang K,Zheng T.Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction.Energy Environ Sci2018;11:893-903

[57]

Geng Z,Chen W.Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction.Appl Catal B Environ2019;240:234-40

[58]

Hu M,Ma D.Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level.Nano Res2022;15:10070-7

[59]

Ou X,Liu Q.Recent progress in CO2-based polyurethanes and polyureas.Prog Polym Sci2024;149:101780

[60]

Zhang N,Zheng H,Liu H.Recent progress of multilayer polymer electrolytes for lithium batteries.Energy Mater2023;3:300009

PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

/