Beyond energy harvesting: a review on the critical role of MXene in triboelectric nanogenerator

Zequan Zhao , Xia Cao , Ning Wang

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400035

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400035 DOI: 10.20517/energymater.2023.121
Review

Beyond energy harvesting: a review on the critical role of MXene in triboelectric nanogenerator

Author information +
History +
PDF

Abstract

In the field of advanced materials and energy harvesting, MXene has played a pivotal role in advancing the development of triboelectric nanogenerators (TENGs). This contribution is notable not only in terms of enhancing the performance of TENGs but also in expanding their application range. A comprehensive review of MXene materials is offered herein to delve into the significant impact of MXene on the growing efficiency of energy harvesting and widening application in areas ranging from energy harvesters to physiochemical sensors to self-powered intelligent systems. We begin with the fundamentals of MXene and TENGs, then highlight how MXene improves TENGs via its integration into the triboelectrification and electrode layers to increase the electronegativity, charge density, and introduce self-healing and stretchability. The discussion then extends to the modifications in MXene that boost the electrical output, stability, and collection efficiency of TENGs. Additionally, the review covers the diverse applications of MXene-based TENGs in extreme environments, respiratory monitoring, and multi-purpose devices, emphasizing its critical role in promoting TENGs to future self-powered intelligent systems.

Keywords

Triboelectric nanogenerators / MXene / energy harvesting / self-power

Cite this article

Download citation ▾
Zequan Zhao, Xia Cao, Ning Wang. Beyond energy harvesting: a review on the critical role of MXene in triboelectric nanogenerator. Energy Materials, 2024, 4(3): 400035 DOI:10.20517/energymater.2023.121

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou C,Xiong Y.A review of etching methods of MXene and applications of MXene conductive hydrogels.Eur Polym J2022;167:111063

[2]

Lamiel C,Warner JH.Beyond Ti-based MXenes: a review of emerging non-Ti based metal-MXene structure, properties, and applications.Mater Today2023;63:313-38

[3]

Tawalbeh M,Al-Othman A,Mofijur M.MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: critical review.Environ Res2023;228:115919

[4]

Chang L.The review of MXenes for osmotic energy harvesting: synthesis and properties.Diam Relat Mater2023;136:109971

[5]

Guo Q,Chen H.Multi-functional graphene/leather for versatile wearable electronics.J Mater Chem A2023;11:11773-85

[6]

Zhou J,Zhou P.Ti3C2Tx MXene nanosheet-functionalized leathers for versatile wearable electronics.ACS Appl Nano Mater2023;6:18150-64

[7]

Zhao W,Li W,Zhou M.An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices.Nanomicro Lett2024;16:99 PMCID:PMC10825113

[8]

Li X.Customizing MXenes.Matter2023;6:2519-22

[9]

Sofer Z,Yu M.MXene chemistry and applications.Small Methods2023;7:e2300778

[10]

Shakya J,Li J.2D MXene electrochemical transistors.Nanoscale2024;16:2883-93

[11]

Natu V.MXene surface terminations: a perspective.J Phys Chem C2023;127:20197-206

[12]

Sharma S,Ebenso EE.MXenes and MXene-based nanomaterials for corrosion protection.Mater Lett2023;335:133789

[13]

Athavale S,Arole K.Advances in the chemical stabilization of MXenes.Langmuir2023;39:918-28

[14]

Mi Y,Shi Y.Biodegradable polymers in triboelectric nanogenerators.Polymers2022;15:222 PMCID:PMC9823430

[15]

Zhao Z,Mi Y.Adaptive triboelectric nanogenerators for long-term self-treatment: a review.Biosensors2022;12:1127 PMCID:PMC9775114

[16]

Mao R,Wang Z.Deep-learning-assisted low-cost flexible cotton yarn-based triboelectric nanogenerator for ultra-sensitive human-computer merging interfaces.Nano Energy2023;111:108418

[17]

Xu Z,Cai H,Zhang H.Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring.Nano Energy2022;102:107719

[18]

Lu Z,Yang X.A flexible TENG based on micro-structure film for speed skating techniques monitoring and biomechanical energy harvesting.Nanomaterials2022;12:1576 PMCID:PMC9103164

[19]

Lu Y,Ping J,Wu J.A flexible, recyclable, and high-performance pullulan-based triboelectric nanogenerator (TENG).Adv Mater Technol2020;5:1900905

[20]

Lin YC,Chang LY.A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring.Sensor Actuat B Chem2023;383:133617

[21]

Chen J,Li J.Self-powered antifouling UVC pipeline sterilizer driven by the discharge stimuli based on the modified freestanding rotary triboelectric nanogenerator.Nano Energy2022;95:106969

[22]

He S,Wang Y.A self-powered β-Ni(OH)2/MXene based ethanol sensor driven by an enhanced triboelectric nanogenerator based on β-Ni(OH)2@PVDF at room temperature.Nano Energy2023;107:108132

[23]

Chen B.Toward a new era of sustainable energy: advanced triboelectric nanogenerator for harvesting high entropy energy.Small2022;18:e2107034

[24]

Zhao Z,Mi Y,Cao X.Structural flexibility in triboelectric nanogenerators: a review on the adaptive design for self-powered systems.Micromachines2022;13:1586 PMCID:PMC9610431

[25]

Lu Y,Ma Z.Integration of flexible supercapacitors with triboelectric nanogenerators: a review.Batteries2023;9:281

[26]

Zhao Z,Lu Y,Cao X.Chemical sensor based on piezoelectric/triboelectric nanogenerators: a review of the modular design strategy.Chemosensors2023;11:304

[27]

Lu Y,Wu T,Wang N.From triboelectric nanogenerator to polymer-based biosensor: a review.Biosensors2022;12:323 PMCID:PMC9138307

[28]

Zhao Z,Mi Y.Modular design in triboelectric sensors: a review on the clinical applications for real-time diagnosis.Sensors2023;23:4194 PMCID:PMC10181202

[29]

Seidi F,Dadashi Firouzjaei M.MXenes antibacterial properties and applications: a review and perspective.Small2023;19:e2206716

[30]

Li K,Zhu Q.Three-dimensional MXenes for supercapacitors: a review.Small Methods2022;6:e2101537

[31]

Wang Y,Wang N.Recent progress in piezoelectric-triboelectric effects coupled nanogenerators.Nanomaterials2023;13:385 PMCID:PMC9921494

[32]

Wang X,Lu Y.Smart triboelectric nanogenerators based on stimulus-response materials: from intelligent applications to self-powered systems.Nanomaterials2023;13:1316 PMCID:PMC10141953

[33]

Jin S,Wang F.The synthesis of MXenes.MRS Bull2023;48:245-52

[34]

Gogotsi Y.The rise of MXenes.ACS Nano2019;13:8491-4

[35]

Gogotsi Y.The future of MXenes.Chem Mater2023;35:8767-70

[36]

Amara U,Ahmad M,Zhang K.2D MXene-based biosensing: a review.Small2023;19:e2205249

[37]

Yin Z,Xue H.A bimetallic-activated MnO2 self-assembly electrode with a dual heterojunction structure for high-performance rechargeable zinc-air batteries.Energy Mater2022;2:200021

[38]

Liu D,Jian Z.Advanced 3D-structured electrode for potassium metal anodes.Energy Mater2023;3:300028

[39]

Arjun AM,Slaughter G.Application of MXene in the electrochemical detection of neurotransmitters: a review.IEEE Sensors J2023;23:16456-66

[40]

Liang J,Liu D.Applications of MXenes in photoelectrochemistry: a review.Mater Res Bull2024;169:112536

[41]

Jung S,Achary LSK.Ligand chemistry for surface functionalization in MXenes: a review.EcoMat2023;5:e12395

[42]

Gopalram K,Kumar PS,Rangasamy G.MXenes and MXene-based materials for removal and detection of water contaminants: a review.Ind Eng Chem Res2023;62:6559-83

[43]

Noor U,Ahmed T.Synthesis and applications of MXene-based composites: a review.Nanotechnology2023;34:262001

[44]

Chen Y,Guo J.Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review.Energy Mater2023;3:300044

[45]

Shahzad U,Saeed M,Rahman MM.Two-dimensional MXenes as emerging materials: a comprehensive review.ChemistrySelect2023;8:e202300737

[46]

Chu YZ,Ward P.First-principles study of MXene properties with varying hydrofluoric acid concentration.iScience2024;27:108784 PMCID:PMC10826293

[47]

Yang W,Chen P,Li L.On the controlled adhesive contact and electrical performance of vertical contact-separation mode triboelectric nanogenerators with micro-grooved surfaces.Nano Energy2021;85:106037

[48]

He Y,Peng W,Li F.On the contact electrification mechanism in semiconductor-semiconductor case by vertical contact-separation triboelectric nanogenerator.Nanotechnology2023;34:295401

[49]

Ji S,Hu Y.Effect of surface texture on the output performance of lateral sliding-mode triboelectric nanogenerator.J Phys Conf Ser2020;1549:042095

[50]

Saeed A,Shah MZ,Wang Q.Sliding mode lateral guidance and control of finless airship.J Aerosp Eng2022;35:04021131

[51]

Padhan A, Hajra S, Sahu M, Nayak S, Joon Kim H, Alagarsamy P. Single-electrode mode TENG using ferromagnetic NiO-Ti based nanocomposite for effective energy harvesting.Mater Lett2022;312:131644

[52]

Mule AR,Patnam H,Yu JS.Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics.ACS Sustain Chem Eng2019;7:16450-8

[53]

Seo J,Sahu M.Effect of cilia microstructure and ion injection upon single-electrode triboelectric nanogenerator for effective energy harvesting.Mater Lett2021;304:130674

[54]

Zhang Z,Xu L.Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode.Nano Energy2019;66:104169

[55]

Paosangthong W,Torah R.Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions.Nano Energy2022;92:106739

[56]

Wang ZL.On the origin of contact-electrification.Mater Today2019;30:34-51

[57]

Luo J.Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications.EcoMat2020;2:e12059

[58]

Wang ZL.Triboelectric nanogenerator (TENG) - sparking an energy and sensor revolution.Adv Energy Mater2020;10:2000137

[59]

Jiang C,Yao Y.A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode.Nano Energy2019;66:104121

[60]

Liu Y,Yan Y.A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy.Nano Energy2021;86:106118

[61]

Rahman MT,Salauddin M.Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications.Nano Energy2022;100:107454

[62]

Kim KN,Choi SH.All-printed wearable triboelectric nanogenerator with ultra-charged electron accumulation polymers based on MXene nanoflakes.Adv Elect Mater2022;8:2200819

[63]

Li W,Yan F,Loos K.High-performance triboelectric nanogenerators based on TPU/mica nanofiber with enhanced tribo-positivity.Nano Energy2023;114:108629

[64]

Tan X,You Z,Liu Y.High performance porous triboelectric nanogenerator based on silk Fibroin@MXene composite aerogel and PDMS sponge.ACS Mater Lett2023;5:1929-37

[65]

Rana SMS,Salauddin M.Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances.ACS Appl Mater Interfaces2021;13:4955-67

[66]

Fan J,Wang L,Zheng H.MXene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors.Nano Energy2023;105:107973

[67]

Zhang Z,Liu Z.Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing.Nano Energy2021;88:106257

[68]

Cao W,Xin W.A Stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity.Adv Funct Mater2020;30:2004181

[69]

Cai Y,Mei Y.Self-healable, super-stretchable and shape-adaptive triboelectric nanogenerator based on double cross-linked PDMS for electronic skins.Nano Energy2022;102:107683

[70]

Wang Z,Wang S.Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator.Chem Eng J2023;463:142427

[71]

Luo X,Wang Y,Nie J.A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel.Adv Funct Mater2021;31:2104928

[72]

Liu J,Wang N.Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor.Nano Energy2020;78:105385

[73]

Xing C,Yu Z,Meng B.Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective electrodes for high-performance triboelectric nanogenerators.ACS Appl Mater Interfaces2022;14:36741-52

[74]

Cao VA,Lee S.Chemically modified MXene nanoflakes for enhancing the output performance of triboelectric nanogenerators.Nano Energy2023;107:108128

[75]

Anwer S,Mohammad B.Engineering of electrodes with 2D Ti3C2Tx-MXene sheets and chloride salt for robust and flexible high electrical power triboelectric nanogenerator.Chem Eng J2023;470:144281

[76]

Yun J,Ryoo M,Goh TS.Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power.Nano Energy2023;105:108018

[77]

Jiang C,Li X.All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets.Nano Energy2019;59:268-76

[78]

Song Z,Kong H.Enhanced energy harvesting performance of triboelectric nanogenerator via efficient dielectric modulation dominated by interfacial interaction.Nano Energy2022;92:106759

[79]

Shao Y,Li J,Huang X.Evaluation of the electrochemical and expansion performances of the Sn-Si/graphite composite electrode for the industrial use.Energy Mater2022;2:200004

[80]

Li C,Zhu Y.Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries.Energy Mater2022;1:100017

[81]

Huang T,Xiao J,Wang G.Recent research on emerging organic electrode materials for energy storage.Energy Mater2022;1:100009

[82]

Yang C,Wang X.Stable and efficient seawater splitting on a porous phosphate-intercalated NiFe (oxy)hydroxide@NiMoO4 core-shell micropillar electrode.Energy Mater2022;1:100015

[83]

Huang J,Zhao M,Huang F.All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors.ACS Appl Mater Interfaces2021;13:24774-84

[84]

Deka BK,Kwak MJ.Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn-Cu selenide nanostructured woven carbon fiber for energy harvesting and storage.Energy Stor Mater2021;43:402-10

[85]

Hasan MM,Albasar I.Scalable fabrication of MXene-PVDF nanocomposite triboelectric fibers via thermal drawing.Small2023;19:e2206107

[86]

Bhatta T,Cho H.High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers.Nano Energy2021;81:105670

[87]

Wang D,Tang M.Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring.Nano Energy2022;100:107509

[88]

Sun X,Liu Y.Biomimetic PVA-PVDF-based triboelectric nanogenerator with MXene doping for self-powered water sterilization.Mater Today Nano2023;24:100410

[89]

Wang M,Nan Y.Droplet energy harvesting system based on MXene/SiO2 modified triboelectric nanogenerators.Chem Eng J2023;477:146832

[90]

Du Y,Dai X,Tang Y.Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2T MXene for self-powered wearable electronics.J Mater Sci Technol2022;100:1-11

[91]

Rana SMS,Zahed MA.Zirconium metal-organic framework and hybridized Co-NPC@MXene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors.Nano Energy2022;104:107931

[92]

Li K,Zhang H.Triboelectric nanogenerators based on super-stretchable conductive hydrogels with the assistance of deep-learning for handwriting recognition.ACS Appl Mater Interfaces2023;15:32993-3002

[93]

Zhang H,Wang Z.Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction.ACS Appl Mater Interfaces2023;15:5128-38

[94]

Hao Y,Mensah A,Lv P.Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing.Nano Energy2023;109:108291

[95]

Chen Y,Wang X,Wang S.MXene effectively enhances the electron-withdrawing (EW) ability and dielectric properties of PVDF-TrFE nanofibers for triboelectric nanogenerators.Colloids Surf Physicochem Eng Asp2023;664:131172

[96]

Wang D,Yang Y,Zhang J.Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal-organic framework-derived CuO nanohybrid ammonia sensor.ACS Nano2021;15:2911-9

[97]

Wang D,Chen X,Tang M.Multifunctional respiration-driven triboelectric nanogenerator for self-powered detection of formaldehyde in exhaled gas and respiratory behavior.Nano Energy2022;102:107711

[98]

Wang D,Tang M.Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics.Chem Eng J2022;446:136914

[99]

He W,Bai P.Multifunctional triboelectric nanogenerator based on flexible and self-healing sandwich structural film.Nano Energy2022;96:107109

[100]

Zhi C,Meng S.A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing.Nano Energy2023;115:108734

[101]

Ghosh K,Konečný M,Michalička J.Nanoarchitectonics of triboelectric nanogenerator for conversion of abundant mechanical energy to green hydrogen.Adv Energy Mater2023;13:2203476

[102]

Nan Y,Xu H.Synergistic effects of charge transport and trapping in tribomaterials for boosted triboelectric nanogenerators.Nano Energy2023;110:108345

[103]

Yang X,Feng K,Yin S.Multifunctional conductive textile for efficient electrothermal conversion and triboelectric nanogenerators.Compos Commun2023;40:101602

PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

/