Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries

Chi Luo , Haoyun Lei , Yiyang Xiao , Xiaoxin Nie , Yuhang Li , Qian Wang , Wenlong Cai , Chunlong Dai , Meng Yao , Yun Zhang , Du Yuan

Energy Materials ›› 2024, Vol. 4 ›› Issue (4) : 400036

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (4) :400036 DOI: 10.20517/energymater.2023.119
Review

Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries

Author information +
History +
PDF

Abstract

Safety issues of energy storage devices in daily life are receiving growing attention, together with resources and environmental concerns. Aqueous zinc ion batteries (AZIBs) have emerged as promising alternatives for extensive energy storage due to their ultra-high capacity, safety, and eco-friendliness. Manganese-based compounds are key to the functioning of AZIBs as the cathode materials thanks to their high operating voltage, substantial charge storage capacity, and eco-friendly characteristics. Despite these advantages, the development of high-performance Mn-based cathodes still faces the critical challenges of structural instability, manganese dissolution, and the relatively low conductivity. Primarily, the charge storage mechanism of manganese-based AZIBs is complex and subject to debate. In view of the above, this review focuses on the mostly investigated MnO2-based cathodes and comprehensively outlines the charge storage mechanisms of MnO2-based AZIBs. Current optimization strategies are systematically summarized and discussed. At last, the perspectives on elucidating advancing MnO2 cathodes are provided from the mechanistic, synthetic, and application-oriented aspects.

Keywords

Aqueous zinc ion battery / charge storage mechanism / manganese dioxide / optimization strategies

Cite this article

Download citation ▾
Chi Luo, Haoyun Lei, Yiyang Xiao, Xiaoxin Nie, Yuhang Li, Qian Wang, Wenlong Cai, Chunlong Dai, Meng Yao, Yun Zhang, Du Yuan. Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries. Energy Materials, 2024, 4(4): 400036 DOI:10.20517/energymater.2023.119

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jing J,Colvin VL,Yu WW.Photocatalytic degradation of nitrogen-containing organic compounds over TiO2.J Mol Catal A Chem2011;351:17-28

[2]

Guan P,Yu Z.Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries.J Energy Chem2020;43:220-35

[3]

Ponrouch A,Bardé F.Towards a calcium-based rechargeable battery.Nat Mater2016;15:169-72

[4]

Nam KW,Lee S.The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries.Nano Lett2015;15:4071-9

[5]

Saha P,Velikokhatnyi OI,Alman D.Rechargeable magnesium battery: current status and key challenges for the future.Prog Mater Sci2014;66:1-86

[6]

Muldoon J,Oliver AG.Electrolyte roadblocks to a magnesium rechargeable battery.Energy Environ Sci2012;5:5941-50

[7]

Pramudita JC,Goonetilleke D.An initial review of the status of electrode materials for potassium-ion batteries.Adv Energy Mater2017;7:1602911

[8]

Han J,Bao SJ,Lu SY.Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries.Chem Commun2016;52:11661-4

[9]

Jian Z,Ji X.Carbon electrodes for K-ion batteries.J Am Chem Soc2015;137:11566-9

[10]

Hueso KB,Rojo T.High temperature sodium batteries: status, challenges and future trends.Energy Environ Sci2013;6:734-49

[11]

Luo C,Zhu Y.Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.ACS Nano2013;7:8003-10

[12]

Yang X,Chang Z.Blood-capillary-inspired, free-standing, flexible, and low-cost super-hydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries.Adv Energy Mater2018;8:1702242

[13]

Abouimrane A,Chapman KW,Weng W.A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode.J Am Chem Soc2012;134:4505-8

[14]

Liu J,Chen Z,Shen ZX.Progress in aqueous rechargeable batteries.Green Energy Environ2018;3:20-41

[15]

Wang Q,Wang D.Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries.Energy Environ Sci2019;12:2433-42

[16]

Wang Q,Zhu A,Wu H.Semi-metallic superionic layers suppressing voltage fading of Li-rich layered oxide towards superior-stable Li-ion batteries.Angew Chem Int Ed2023;62:e202309049

[17]

Kang S,Gao W.Toward safer lithium metal batteries: a review.Energy Mater2023;3:300043

[18]

Pan Z,Yang J.Aqueous rechargeable multivalent metal-ion batteries: advances and challenges.Adv Energy Mater2021;11:2100608

[19]

Qiu S,Wu X.Prussian blue analogues as electrodes for aqueous monovalent ion batteries.Electrochem Energy Rev2022;5:242-62

[20]

Dong N,Pan H.Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries.Chem Sci2022;13:8243-52 PMCID:PMC9297528

[21]

Wan F,Zhang L.Reversible Oxygen redox chemistry in aqueous zinc-ion batteries.Angew Chem Int Ed2019;58:7062-7

[22]

Zhao K,Yu Y.Ultrathin surface coating enables stabilized zinc metal anode.Adv Mater Inter2018;5:1800848

[23]

Yang F,Hao J.Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance.Adv Mater2022;34:e2206754

[24]

Zhao G,Dou SX.Heterostructures for electrochemical hydrogen evolution reaction: a review.Adv Funct Mater2018;28:1803291

[25]

Wang F,Gao T.Highly reversible zinc metal anode for aqueous batteries.Nat Mater2018;17:543-9

[26]

Kim JY,Shim GY,Lee JK.Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes.Adv Funct Mater2020;30:2004210

[27]

He H,Song X,Liu J.Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries.J Mater Chem A2020;8:7836-46

[28]

Tarascon JM.Issues and challenges facing rechargeable lithium batteries.Nature2001;414:359-67

[29]

Olivetti EA,Gaustad GG.Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals.Joule2017;1:229-43

[30]

Wang L,Wang T,Guo Y.Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries.J Power Sources2017;355:18-22

[31]

Liu X,Du Y,Yang A.Vanadium pentoxide nanofibers/carbon nanotubes hybrid film for high-performance aqueous zinc-ion batteries.Nanomaterials2021;11:1054 PMCID:PMC8074388

[32]

Li Y,Lin S,Lei Z.Preparation of α-MnO2 nanorods/porous carbon cathode for aqueous zinc-ion batteries.Acta Chimica Sinica2021;79:200-7

[33]

Li Z,Meng R.Insights into the structure stability of prussian blue for aqueous zinc ion batteries.Energy Environ Mater2021;4:111-6

[34]

Liu Q,Chen Z.A polyaniline surface-modified Prussian blue analogue cathode for flexible aqueous Zn-ion batteries.Chem Commun2022;58:8226-9

[35]

Sun W,Hou S.Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion.J Am Chem Soc2017;139:9775-8

[36]

Wu P,Feng Y.Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption.Adv Funct Mater2024;34:2311983

[37]

Ding J,Li B.Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries.Adv Mater2019;31:e1904369

[38]

Caldeira V,Fourgeot F.Controlling the shape change and dendritic growth in Zn negative electrodes for application in Zn/Ni batteries.J Power Sources2017;350:109-16

[39]

Wang X,Wang L.An aqueous rechargeable Zn//Co3O4 Battery with high energy density and good cycling behavior.Adv Mater2016;28:4904-11

[40]

Zhou J,Wu Z,Fang G.Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode.Chem Commun2018;54:4457-60

[41]

He P,Zhang G.Layered VS2 nanosheet-based aqueous Zn ion battery cathode.Adv Energy Mater2017;7:1601920

[42]

Jia Z,Wang Y.Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries.Mater Chem Phys2015;149-50:601-6

[43]

Zhang L,Zhou X.Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system.Adv Energy Mater2015;5:1400930

[44]

Alfaruqi MH,Kim S.Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode.J Power Sources2015;288:320-7

[45]

Islam S,Mathew V.Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries.J Mater Chem A2017;5:23299-309

[46]

Alfaruqi MH,Gim J.Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system.Chem Mater2015;27:3609-20

[47]

Wei C,Li B,Kang F.Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage.J Phys Chem Solids2012;73:1487-91

[48]

Xuan X,Pan L.A hollow tubular NiCo layacknered double hydroxide@Ag nanowire structure for high-power-density flexible aqueous Ni//Zn battery.J Energy Chem2022;70:593-603

[49]

Huang J,Xie R.Structural engineering of cathodes for improved Zn-ion batteries.J Energy Chem2021;58:147-55

[50]

Cui Y,Guo L.Ultra-long Zn3V2O7(OH)2·2H2O nanowires grown on carbon cloth as cathode material for aqueous zinc-ion batteries.Energy Mater2023;3:300023

[51]

Zhu Y,Zhu R.Recent advances in flexible alkaline zinc-based batteries: materials, structures, and perspectives.J Energy Chem2023;87:61-88

[52]

Lu C,Wang Y.Ethylene glycol-regulated ammonium vanadate with stable layered structure and favorable interplanar spacing as high-performance cathode for aqueous zinc ion batteries.Chin Chem Lett2023;34:108572

[53]

Wei W,Chen W.Manganese oxide-based materials as electrochemical supercapacitor electrodes.Chem Soc Rev2011;40:1697-721

[54]

Gao X,Li W.H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery.Small2020;16:e1905842

[55]

Wan F,Dai X,Niu Z.Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.Nat Commun2018;9:1656 PMCID:PMC5916908

[56]

Álvarez-serrano I,Giraldo DA,Solsona B.Stable manganese-oxide composites as cathodes for Zn-ion batteries: interface activation from in situ layer electrochemical deposition under 2 V.Adv Mater Inter2022;9:2101924

[57]

Shen Z,Li C.Precise proton redistribution for two-electron redox in aqueous zinc/manganese dioxide batteries.Adv Energy Mater2021;11:2102055

[58]

Jing F,Shang Y.Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode.Energy Stor Mater2022;49:164-71

[59]

Zhao Y,Liang J.Unlocking layered double hydroxide as a high-performance cathode material for aqueous zinc-ion batteries.Adv Mater2022;34:e2204320

[60]

Guo D,Pan F.Block copolymer-derived porous carbon fibers enable high MnO2 loading and fast charging in aqueous zinc-ion battery.Batteries Supercaps2022;5:e202100380

[61]

Dai H,Zhang Z,Sun G.Design of manganese dioxide for supercapacitors and zinc-ion batteries: similarities and differences.Energy Mater2022;2:200040

[62]

Chen H,Xiao F.Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide.Adv Mater2022;34:e2109092

[63]

Shoji T,Yamamoto T.Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell.J Appl Electrochem1988;18:521-6

[64]

Xu C,Du H.Energetic zinc ion chemistry: the rechargeable zinc ion battery.Angew Chem Int Ed2012;51:933-5

[65]

Pan H,Yan P.Reversible aqueous zinc/manganese oxide energy storage from conversion reactions.Nat Energy2016;1:16039

[66]

Zhu C,Liang S.Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery.Energy Stor Mater2020;24:394-401

[67]

Khamsanga S,Yonezawa T,Kheawhom S.δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries.Sci Rep2019;9:8441 PMCID:PMC6560026

[68]

Alfaruqi MH,Kim S.A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications.Electrochem Commun2015;60:121-5

[69]

Mathew V,Kim S.Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments.ACS Energy Lett2020;5:2376-400

[70]

Fu Y,Zhang G.High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon.Adv Energy Mater2018;8:1801445

[71]

Wang Q,Chen P.Phenazine-based organic cathode for aqueous zinc secondary batteries.J Power Sources2020;468:228401

[72]

Huang Y,Liu W.Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2.Nanomicro Lett2019;11:49 PMCID:PMC7770901

[73]

Zhao Q,Wang Z.Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery.Small2019;15:e1904545

[74]

Wang L.Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries.Mater Today Adv2020;7:100078

[75]

Qiu N,Yang Z,Wang Y.Synthesis of manganese-based complex as cathode material for aqueous rechargeable batteries.RSC Adv2018;8:15703-8 PMCID:PMC9080094

[76]

Siamionau U,Mazanik A.Rechargeable zinc-ion batteries with manganese dioxide cathode: How critical is choice of manganese dioxide polymorphs in aqueous solutions?.J Power Sources2022;523:231023

[77]

Bi S,Cao A,Zhang S.Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance.Mater Today Energy2020;18:100548

[78]

Liu W,Huang Y.β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery.J Energy Chem2021;56:365-73

[79]

Kang J,Li H,Hu B.An overview of aqueous zinc-ion batteries based on conversion-type cathodes.Energy Mater2022;2:200009

[80]

Xu Y,Liu J.Promoting the reversibility of electrolytic MnO2-Zn battery with high areal capacity by VOSO4 mediator.Energy Mater2024;4:400005

[81]

Liang G,Li H.A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism.Adv Energy Mater2019;9:1901838

[82]

Guo X,Bai C,Fang G.Zn/MnO2 battery chemistry with dissolution-deposition mechanism.Mater Today Energy2020;16:100396

[83]

Kankanallu VR,Leschev D.Elucidating a dissolution-deposition reaction mechanism by multimodal synchrotron X-ray characterization in aqueous Zn/MnO2 batteries.Energy Environ Sci2023;16:2464-82

[84]

Li H,Sun X.Interface regulated MnO2/Mn2+ redox chemistry in aqueous Zn ion batteries.Chem Eng J2022;446:137205

[85]

Lee B,Lee HR.Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries.ChemSusChem2016;9:2948-56

[86]

Wang L,Xu L,Zheng J.Transformed akhtenskite MnO2 from Mn3O4 as cathode for a rechargeable aqueous zinc ion battery.ACS Sustain Chem Eng2018;6:16055-63

[87]

Kim SH.Degradation mechanism of layered MnO2 cathodes in Zn/ZnSO4/MnO2 rechargeable cells.J Power Sources1998;72:150-8

[88]

Yang H,Chen D.Protocol in evaluating capacity of Zn-Mn aqueous batteries: a clue of pH.Adv Mater2023;35:e2300053

[89]

Sambandam B,Kim S.An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries.Chem2022;8:924-46

[90]

Ma Y,Liu R.Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability.Energy Stor Mater2022;48:212-22

[91]

Wang C,Xiao X.γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery.J Energy Chem2020;43:182-7

[92]

Zhao M,Zhu L.Ultrathin δ-MnO2 nanosheets branched onto N-doped carbon nanotubes as binder-free cathode electrodes for aqueous zinc-ion batteries with a high areal capacity.J Alloys Compd2022;913:165124

[93]

Li L,Wang D.Facile synthesis λ-MnO2 spinel for highly effective catalytic oxidation of benzene.Chem Eng J2021;421:127828

[94]

Zhang N,Liu Y.Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous zn-ion battery.J Am Chem Soc2016;138:12894-901

[95]

Pam ME,Yu J.Microstructural engineering of cathode materials for advanced zinc-ion aqueous batteries.Adv Sci2020;8:2002722 PMCID:PMC7788579

[96]

Yu Z,Zhai L.Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions.Energy Environ Sci2015;8:702-30

[97]

Hao J,Zhang J.Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery.Electrochim Acta2018;259:170-8

[98]

Wang Y,He P,Zhou H.Nano active materials for lithium-ion batteries.Nanoscale2010;2:1294-305

[99]

Song H,Zhang C,Cao G.Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries.J Mater Chem A2015;3:3547-58

[100]

Alfaruqi MH,Gim J.A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries.Chem Phys Lett2016;650:64-8

[101]

Nam KW,Choi JH.Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries.Energy Environ Sci2019;12:1999-2009

[102]

Li X,Yang Z.Unraveling the role of nitrogen-doped carbon nanowires incorporated with MnO2 nanosheets as high performance cathode for zinc-ion batteries.Energy Environ Mater2023;6:e12378

[103]

Zhang Y,Li Y.Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries.Energy Stor Mater2020;29:52-9

[104]

Liu G,Bi R,Ma T.K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries.J Mater Chem A2019;7:20806-12

[105]

Hong S,Deng Y.Efficient scalable hydrothermal synthesis of MnO2 with controlled polymorphs and morphologies for enhanced battery cathodes.ACS Energy Lett2023;8:1744-51

[106]

Wang H,Qin N.Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries.J Mater Chem A2019;7:10346-53

[107]

Ren Q,Liu B.An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics.J Mater Chem A2020;8:3450-8

[108]

Uchaker E,Li S,Hu S.Better than crystalline: amorphous vanadium oxide for sodium-ion batteries.J Mater Chem A2014;2:18208-14

[109]

Ku JH,Kim SH,Oh SM.Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode.Adv Funct Mater2012;22:3658-64

[110]

Xiao D,Fan J,Chen Z.Zn-based batteries for energy storage.Energy Mater2023;3:300007

[111]

Huang S,Zheng Y.Efficient sodium storage in rolled-up amorphous Si nanomembranes.Adv Mater2018;30:e1706637

[112]

Fan L,Yan B.Controlled SnO2 crystallinity effectively dominating sodium storage performance.Adv Energy Mater2016;6:1502057

[113]

Cai Y,Huang S,Srinivasan M.Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery.Chem Eng J2020;396:125221

[114]

Liang R,Deng Y.Parasitic electrodeposition in Zn-MnO2 batteries and its suppression for prolonged cyclability.Energy Stor Mater2021;36:478-84

[115]

Hu Q,He M,Lam KH.Core-shell nanostructured MnO2@Co9S8 arrays for high-performance supercapacitors.Electrochim Acta2020;338:135896

[116]

Li Q,Mo F.Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure.Adv Energy Mater2021;11:2003931

[117]

Islam S,Song J.Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications.J Energy Chem2017;26:815-9

[118]

Wu B,Yan M.Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery.Small2018;14:e1703850

[119]

Gök A,Talu M.Synthesis and characterization of conducting substituted polyanilines.Synth Met2004;142:41-8

[120]

Benhaddad L,Makhloufi L,Pillier F.Improvement of capacitive performances of symmetric carbon/carbon supercapacitors by addition of nanostructured polypyrrole powder.J Power Sources2016;307:297-307

[121]

Lu Q.Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties.J Power Sources2011;196:4088-94

[122]

Mao J,Shi W.Preparation of polyaniline-coated composite aerogel of MnO2 and reduced graphene oxide for high-performance zinc-ion battery.Chin J Polym Sci2020;38:514-21

[123]

Bao X,Zhou D.Pseudo-capacitive performance enhancement of α-MnO2 via in situ coating with polyaniline.Synth Met2020;260:116271

[124]

Zang X,Zhu M.Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes.Nanoscale2015;7:7318-22

[125]

Tantawy HR,Mcilroy DN.X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders.J Appl Phys2015;118:175501

[126]

Han J,Liu W.Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell.Nanoscale2018;10:13083-91

[127]

Kamenskii MA,Eliseeva SN,Kondratiev VV.Comparative Study of PEDOT- and PEDOT:PSS Modified δ-MnO2 cathodes for aqueous zinc batteries with enhanced properties.J Electrochem Soc2023;170:010505

[128]

Li Y,Liu X,Yuan D.Roles of electrolyte additive in Zn chemistry.Nano Res2023;16:9179-94

[129]

Qiu N,Yang Z,Wang Y.Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries.Electrochim Acta2018;272:154-60

[130]

Zhang N,Liu J.Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities.Nat Commun2017;8:405 PMCID:PMC5581336

[131]

Fan W,Xu Y.Constructing stable Zn anodes for aqueous rechargeable zinc batteries.Next Energy2023;1:100049

[132]

Bhattachar SN,Wesley JA.Solubility: it’s not just for physical chemists.Drug Discov Today2006;11:1012-8

[133]

Tie Z.Design strategies for high-performance aqueous Zn/organic batteries.Angew Chem Int Ed2020;59:21293-303

[134]

Tie Z,Deng S,Niu Z.Proton insertion chemistry of a zinc-organic battery.Angew Chem Int Ed2020;59:4920-4

[135]

Liu S,Liu D.Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density.Energy Stor Mater2022;49:93-101

[136]

Liu N,Yin Y.Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries.ACS Appl Mater Interfaces2020;12:28199-205

[137]

Jin X,Dai C.A flexible aqueous zinc-iodine microbattery with unprecedented energy density.Adv Mater2022;34:e2109450

[138]

Geng Y,Peng Z.Electrolyte additive engineering for aqueous Zn ion batteries.Energy Stor Mater2022;51:733-55

[139]

Chen M,Wang A.Anti-freezing flexible aqueous Zn-MnO2 batteries working at -35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte.J Mater Chem A2020;8:6828-41

[140]

Liu X,Yang X.Influence of water on gel electrolytes for zinc-ion batteries.Chem Asian J2023;18:e202201280

[141]

Yuan D,Yao H.A liquid crystal ionomer-type electrolyte toward ordering-induced regulation for highly reversible zinc ion battery.Adv Sci2023;10:e2206469 PMCID:PMC10015864

[142]

Yuan D,Ren H.Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries.Angew Chem Int Ed2021;60:7213-9

[143]

Liu B,Li Y.Colossal capacity loss during calendar aging of Zn battery chemistries.ACS Energy Lett2023;8:3820-8

[144]

Zhu R,Yang H.Anode/cathode dual-purpose aluminum current collectors for aqueous zinc-ion batteries.Adv Funct Mater2023;33:2211274

[145]

Mu Y,Wu BK.3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries.Nat Commun2023;14:4205 PMCID:PMC10349079

PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

/