Organic cathode materials for aqueous zinc-organic batteries

Jiahao Li , Hanfeng Liang

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400033

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400033 DOI: 10.20517/energymater.2023.116
Review

Organic cathode materials for aqueous zinc-organic batteries

Author information +
History +
PDF

Abstract

Aqueous zinc batteries that utilize metallic Zn as the anode are considered as a promising alternative to lithium-ion batteries due to their intrinsic high safety, low cost, and relatively high energy density. Compared to inorganic cathodes, organic cathodes exhibit several advantages including high theoretical capacity, tunable structure, abundant sources, and environmental friendliness. In this paper, we summarize the recent progress in organic cathodes for aqueous zinc-organic batteries, covering the working mechanisms of three typical types of organic cathodes, their electrochemical performance, and common strategies for further improvement. Finally, we discuss the current challenges and possible future research directions. We hope this review will offer useful information for exploring high-performance organic cathodes.

Keywords

Aqueous zinc-organic batteries / organic cathode materials / mechanisms / improvement strategies

Cite this article

Download citation ▾
Jiahao Li, Hanfeng Liang. Organic cathode materials for aqueous zinc-organic batteries. Energy Materials, 2024, 4(3): 400033 DOI:10.20517/energymater.2023.116

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van Noorden R. The rechargeable revolution: a better battery.Nature2014;507:26-8

[2]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:1800561

[3]

Kang S,Gao W.Toward safer lithium metal batteries: a review.Energy Mater2023;3:300043

[4]

Feng Y,Ma H.Challenges and advances in wide-temperature rechargeable lithium batteries.Energy Environ Sci2022;15:1711-59

[5]

Xiao D,Fan J,Chen Z.Zn-based batteries for energy storage.Energy Mater2023;3:300007

[6]

Blanc LE,Nazar LF.Scientific challenges for the implementation of Zn-ion batteries.Joule2020;4:771-99

[7]

Gourley SW,Adams BD.Zinc-ion batteries for stationary energy storage.Joule2023;7:1415-36

[8]

Chen L,Mai L.Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries.Adv Mater Inter2019;6:1900387

[9]

Han M,Lu Q.Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives.Small2023;e2310293

[10]

Alfaruqi MH,Kim S.Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode.J Power Sources2015;288:320-7

[11]

Cui Y,Guo L.Ultra-long Zn3V2O7(OH)2·2H2O nanowires grown on carbon cloth as cathode material for aqueous zinc-ion batteries.Energy Mater2023;3:300023

[12]

Zhang K,Wu J.Layered structural Zn2Mo3O8 as electrode material for aqueous zinc-ion batteries.Electrochim Acta2022;403:139629

[13]

Lu Y,Zeng S.An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries.J Mater Chem A2019;7:21678-83

[14]

Zhang Y,Lu L,Yu DY.Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries.J Power Sources2021;484:229263

[15]

Li Y,Hu Q.Prussian blue analogs cathodes for aqueous zinc ion batteries.Mater Today Energy2022;29:101095

[16]

Xu Y,Liu J.Promoting the reversibility of electrolytic MnO2-Zn battery with high areal capacity by VOSO4 mediator.Energy Mater2024;4:400005

[17]

Mathew V,Kim S.Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments.ACS Energy Lett2020;5:2376-400

[18]

Schon TB,Li PF.Correction: the rise of organic electrode materials for energy storage.Chem Soc Rev2016;45:6405-6

[19]

Li Z,Wang Y.Building better aqueous Zn-organic batteries.Energy Environ Sci2023;16:2398-431

[20]

Wang H,Cheng L.The emerging aqueous zinc-organic battery.Coord Chem Rev2022;472:214772

[21]

Tie Z.Design strategies for high-performance aqueous Zn/organic batteries.Angew Chem Int Ed Engl2020;59:21293-303

[22]

Cui H,Huang Z,Zhi C.Organic materials-based cathode for zinc ion battery.SmartMat2022;3:565-81

[23]

Zheng S,Hou Y,Tao Z.Recent progress and strategies toward high performance zinc-organic batteries.J Energy Chem2021;63:87-112

[24]

Cui J,Yi J.Organic cathode materials for rechargeable zinc batteries: mechanisms, challenges, and perspectives.ChemSusChem2020;13:2160-85

[25]

Sun T.Understanding cathode materials in aqueous zinc-organic batteries.Curr Opin Electrochem2021;30:100799

[26]

Zhang M,Huang W.Recent progress in calix[n]quinone (n = 4, 6) and pillar[5]quinone electrodes for secondary rechargeable batteries.Batter Supercaps2020;3:476-87

[27]

Macdiarmid AG,Halpern M.“Polyaniline”: interconversion of metallic and insulating forms.Mol Cryst Liq Cryst1985;121:173-80

[28]

Koshika K,Oyaizu K.An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte.Chem Commun2009;836-8

[29]

Häupler B,Schwenke AM.Aqueous zinc-organic polymer battery with a high rate performance and long lifetime.NPG Asia Mater2016;8:e283

[30]

Zhao Q,Luo Z.High-capacity aqueous zinc batteries using sustainable quinone electrodes.Sci Adv2018;4:eaao1761 PMCID:PMC5837429

[31]

Glatz H,Pacifico F.An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane.ACS Appl Energy Mater2019;2:1288-94

[32]

Tie Z,Deng S,Niu Z.Proton insertion chemistry of a zinc-organic battery.Angew Chem Int Ed Engl2020;59:4920-4

[33]

Gao Y,Wang F.A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine.Energy Storage Mater2021;40:31-40

[34]

Song Z,Duan H.Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc-organic batteries.Angew Chem Int Ed Engl2022;61:e202208821

[35]

Chen Y,Fan K.Frontispiece: a recyclable and scalable high-capacity organic battery.Angew Chem Int Ed Engl2023;62:e202302539

[36]

Poizot P,Renault S,Liang Y.Opportunities and challenges for organic electrodes in electrochemical energy storage.Chem Rev2020;120:6490-557

[37]

Esser B,Becuwe M,Vlad A.A perspective on organic electrode materials and technologies for next generation batteries.J Power Sources2021;482:228814

[38]

Lu Y.Prospects of organic electrode materials for practical lithium batteries.Nat Rev Chem2020;4:127-42

[39]

Guo Z,Dong X,Wang Y.An environmentally friendly and flexible aqueous zinc battery using an organic cathode.Angew Chem Int Ed Engl2018;57:11737-41

[40]

Nam KW,Beldjoudi Y,Kim DJ.Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries.J Am Chem Soc2020;142:2541-8

[41]

Shi M,Wu ZS,Zhang X.Aqueous organic batteries using the proton as a charge carrier.Adv Mater2023;35:e2302199

[42]

Deng X,Zhang G.Proton storage chemistry in aqueous zinc-organic batteries: a review.InfoMat2023;5:e12382

[43]

Wang Y,Ni Z.Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries.Adv Mater2020;32:e2000338

[44]

Ye Z,Cao Z.High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode.Energy Storage Mater2021;37:378-86

[45]

Chen Y,Zhu Q.Two-dimensional organic supramolecule via hydrogen bonding and π-π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries.Angew Chem Int Ed Engl2022;61:e202116289

[46]

Koshika K,Oyaizu K.An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode.Macromol Chem Phys2009;210:1989-95

[47]

Luo Y,Liu L.A high-power aqueous zinc-organic radical battery with tunable operating voltage triggered by selected anions.ChemSusChem2020;13:2239-44

[48]

Winsberg J,Morgenstern S.Poly(TEMPO)/zinc hybrid-flow battery: a novel, “green,” high voltage, and safe energy storage system.Adv Mater2016;28:2238-43

[49]

C´iric´-Marjanovic´ G.Charge-discharge characteristics of polythiopheneas a cathode active material in a rechargeable battery.J Appl Electrochem1998;28:103-6

[50]

Simons TJ,Howlett PC,Macfarlane DR.Rechargeable Zn/PEDOT battery with an imidazolium-based ionic liquid as the electrolyte.ChemElectroChem2015;2:2071-8

[51]

Cui H,Huang Z.High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation.Angew Chem Int Ed Engl2022;61:e202203453

[52]

Zhang H,Xie J,Liu X.A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries.Adv Mater2021;33:e2101857

[53]

Lee MH,Lim H.High-energy and long-lasting organic electrode for a rechargeable aqueous battery.ACS Energy Lett2022;7:3637-45

[54]

Wang S,Yao M,Niu Z.Engineering active sites of polyaniline for AlCl2+ storage in an aluminum-ion battery.Angew Chem Int Ed Engl2020;59:11800-7

[55]

Wang J,Hu M.A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function.J Mater Chem A2018;6:11113-8

[56]

Pandey PC.Electrochemical synthesis of polyindole and its evaluation for rechargeable battery applications.J Electrochem Soc1998;145:999-1003

[57]

Cai Z.Study on the electrochemical properties of zinc/polyindole secondary battery.J Power Sources2011;196:10731-6

[58]

Cai Z,Yang H.Electrochemical properties of electrospun poly(5-cyanoindole) submicron-fibrous electrode for zinc/polymer secondary battery.J Power Sources2015;279:114-22

[59]

Kye H,Jang D,Kim B.p-type redox-active organic electrode materials for next-generation rechargeable batteries.Adv Energy Sustain Res2022;3:2200030

[60]

Qiu X,Dong X.A high-voltage Zn-organic battery using a nonflammable organic electrolyte.Angew Chem Int Ed Engl2021;60:21025-32

[61]

He W,Lamsal BS.Decreasing water activity using the tetrahydrofuran electrolyte additive for highly reversible aqueous zinc metal batteries.ACS Appl Mater Interfaces2023;15:6647-56

[62]

Li J,Wu J.Dextran: a multifunctional and universal electrolyte additive for aqueous Zn ion batteries.Adv Energy Mater2023;13:2301743

[63]

Dawut G,Miao L.High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode.Inorg Chem Front2018;5:1391-6

[64]

Lin Z,Lin L,Wu W.A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries.Nat Commun2021;12:4424 PMCID:PMC8292436

[65]

Kumankuma-Sarpong J,Guo W.Naphthoquinone-based composite cathodes for aqueous rechargeable zinc-ion batteries.ACS Appl Mater Interfaces2021;13:4084-92

[66]

Kundu D,Glaros C.Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling.Chem Mater2018;30:3874-81

[67]

Wang X,Lu F,Chen X.Boosting aqueous Zn2+ storage in 1,4,5,8-naphthalenetetracarboxylic dianhydride through nitrogen substitution.ChemElectroChem2019;6:3644-7

[68]

Xie J,Zhao J.An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery.Energy Storage Mater2020;33:283-9

[69]

Sun T,Zhi Y,Fan HJ.Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc-organic batteries.Adv Funct Mater2021;31:2010049

[70]

Mirle C,Ramanujam K.Electrode and conductive additive compatibility yielding excellent rate capability and long cycle life for sustainable organic aqueous Zn-ion batteries.ACS Appl Energy Mater2021;4:1218-27

[71]

Sun T,Nian Q.Molecular engineering design for high-performance aqueous zinc-organic battery.Nanomicro Lett2023;15:36 PMCID:PMC9839927

[72]

Buyukcakir O,Begar F.Ultralong-life quinone-based porous organic polymer cathode for high-performance aqueous zinc-ion batteries.ACS Appl Energy Mater2023;6:7672-80

[73]

Zhang H,Yang F,Lu X.Aromatic organic molecular crystal with enhanced π-π stacking interaction for ultrafast Zn-ion storage.Energy Environ Sci2020;13:2515-23

[74]

Khayum M A,Vijayakumar V.Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery.Chem Sci2019;10:8889-94 PMCID:PMC6855258

[75]

Zheng S,Yan D.Orthoquinone-based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc-organic batteries.Angew Chem Int Ed Engl2022;61:e202117511

[76]

Xu D,Cao Z.High-rate aqueous zinc-ion batteries enabled by a polymer/graphene composite cathode involving reversible electrolyte anion doping/dedoping.J Mater Chem A2021;9:10666-71

[77]

Wang Q,Chen P.Phenazine-based organic cathode for aqueous zinc secondary batteries.J Power Sources2020;468:228401

[78]

Liang J,Cheng L.2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode.J Colloid Interface Sci2022;607:1262-8

[79]

Li J,Lv H.Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries.ACS Appl Mater Interfaces2022;14:38844-53

[80]

Li S,Li M.Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life.Adv Mater2023;35:e2207115

[81]

Zhang S,Li H.A high-capacity organic cathode based on active N atoms for aqueous zinc-ion batteries.Chem Eng J2020;400:125898

[82]

Sun T,Nian Q.Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery.Chem Eng J2023;452:139324

[83]

Chen X,Yang B,Liu Q.Realizing high-rate aqueous zinc-ion batteries using organic cathode materials containing electron-withdrawing groups.Sust Energy Fuels2022;6:2523-31

[84]

Sun G,Chen X.Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ Co-uptake.Chem Eng J2022;431:134253

[85]

Li J,Lv H.Investigations on the electrochemical behaviors of hexaazatriphenylene derivative as high-performance electrode for batteries.Electrochim Acta2022;432:141206

[86]

Wang W,Cao Z.Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries.Adv Mater2021;33:e2103617

[87]

Wang W,Cao Z.Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery.ACS Energy Lett2020;5:2256-64

[88]

Shi Y,Gao H.π-conjugated N-heterocyclic compound with redox-active quinone and pyrazine moieties as a high-capacity organic cathode for aqueous zinc-ion batteries.Chem Eng J2023;461:141850

[89]

Sun T,Zhang W,Fan HJ.Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery.Adv Funct Mater2023;33:2306675

[90]

Ye F,Dong H.Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics.Angew Chem Int Ed Engl2022;61:e202214244

[91]

Huang L,Wang J.Organic compound as a cathode for aqueous zinc-ion batteries with improved electrochemical performance via multiple active centers.ACS Appl Energy Mater2022;5:15780-7

[92]

Sun T,Zha Z,Li D.Designing a solubility-limited small organic molecule for aqueous zinc-organic batteries.Energy Storage Mater2023;59:102778

[93]

Wang Y,Tang J.A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries.J Mater Chem A2022;10:13868-75

[94]

Huang X,Wang W.Activating organic electrode via trace dissolved organic molecules.J Am Chem Soc2023;145:25604-13

[95]

Li W,Zhang H.Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries.Nat Commun2023;14:5235 PMCID:PMC10462634

[96]

Sun QQ,Du JY.In situ electrochemical activation of hydroxyl polymer cathode for high-performance aqueous zinc-organic batteries.Angew Chem Int Ed Engl2023;62:e202307365

[97]

Wan F,Wang X,Niu Z.An aqueous rechargeable zinc-organic battery with hybrid mechanism.Adv Funct Mater2018;28:1804975

[98]

Liu Z,Höfft O,Lahiri A.An ionic liquid-surface functionalized polystyrene spheres hybrid electrolyte for rechargeable zinc/conductive polymer batteries.ChemElectroChem2018;5:2321-5

[99]

Tang M,Hu P.Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry.Adv Funct Mater2021;31:2102011

[100]

Wang N,Ni Z.Molecular tailoring of an n/p-type phenothiazine organic scaffold for zinc batteries.Angew Chem Int Ed Engl2021;60:20826-32

[101]

Zhang H,Wang L.A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism.Small2021;17:e2100902

[102]

Yu P,Gan X,Huang L.Thionin as a bipolar organic cathode material for aqueous rechargeable zinc batteries.Batter Supercaps2023;6:e202300010

[103]

Yan L,Qi Y.Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode.Angew Chem Int Ed Engl2022;61:e202211107

[104]

Lu Y,Miao L.Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries.Angew Chem Int Ed Engl2019;58:7020-4

[105]

Liang Y,Yang S,Chen J.Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries.Adv Energy Mater2013;3:600-5

[106]

Gan X.Small-molecule organic electrode materials for rechargeable batteries.Sci China Chem2023;66:3070-104

[107]

Liao X,Yan H,Pan Y.Polyaniline-functionalized graphene composite cathode with enhanced Zn2+ storage performance for aqueous zinc-ion battery.Chem Eng J2022;440:135930

[108]

Mandić Z,Pokupčić T.Polyaniline as cathodic material for electrochemical energy sources: the role of morphology.Electrochim Acta2009;54:2941-50

[109]

Zhang S,Li H.Cross-conjugated polycatechol organic cathode for aqueous zinc-ion storage.ChemSusChem2020;13:188-95

[110]

Ni Q,Wu C.Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators.Adv Mater2022;34:e2108206

[111]

Kim J,Yoo J,Ko Y.Organic batteries for a greener rechargeable world.Nat Rev Mater2023;8:54-70

[112]

Zhang L,Jiang Z.Cation-anion redox active organic complex for high performance aqueous zinc ion battery.Energy Environ Mater2024;7:e12507

[113]

Cai T,Lan Q.Stable cycling of small molecular organic electrode materials enabled by high concentration electrolytes.Energy Storage Mater2020;31:318-27

[114]

Zhao Z,Ho DT.A novel “water-in-ionic liquid” electrolyte for Zn metal batteries.ACS Energy Lett2023;8:608-18

[115]

Yu L,Wang S,Wang S.Ionic liquid “water pocket” for stable and environment-adaptable aqueous zinc metal batteries.Adv Mater2023;35:e2210789

[116]

Luo J,Huang Y.Poly(ionic liquid) additive: aqueous electrolyte engineering for ion rectifying and calendar corrosion relieving.Chem Eng J2023;470:144152

[117]

Geng Y,Peng Z.Electrolyte additive engineering for aqueous Zn ion batteries.Energy Storage Mater2022;51:733-55

[118]

Li Y,Liu X,Yuan D.Roles of electrolyte additive in Zn chemistry.Nano Res2023;16:9179-94

[119]

Guo S,Zhang T.Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries.Energy Storage Mater2021;34:545-62

[120]

Naveed A,Raza B.Addressing thermodynamic Instability of Zn anode: classical and recent advancements.Energy Storage Mater2022;44:206-30

[121]

Ma K,Wang C.Towards storable and durable Zn-MnO2 batteries with hydrous tetraglyme electrolyte.J Energy Chem2023;80:432-41

[122]

Ilyas F,Zhang Y,Ma H.Intrinsically safe electrolyte boosting high reversibleZn anode for rechargeable batteries.Energy Storage Mater2023;55:566-74

[123]

Li J,Li C.High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery.Nano Res2022;15:7190-8

[124]

Li Y,Qiao Y.Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries.Dalton Trans2023;52:11780-96

[125]

Lu K,Hu H.Hydrogel electrolytes for quasi-solid zinc-based batteries.Front Chem2020;8:546728 PMCID:PMC7672033

[126]

Wu M,Wang X.Long-life aqueous zinc-organic batteries with a trimethyl phosphate electrolyte and organic cathode.ACS Sustainable Chem Eng2023;11:957-64

[127]

Du W,Yang Y,Ye M.Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries.Energy Environ Sci2020;13:3330-60

[128]

Hu Q,Li Y.Insights into Zn anode surface chemistry for dendrite-free Zn ion batteries.J Mater Chem A2022;10:11288-97

[129]

Bayaguud A,Zhu C.Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies.J Energy Chem2022;64:246-62

[130]

Chen J,Jiang J.Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries.Energy Storage Mater2023;59:102767

[131]

Cao J,Zhang X,Qin J.Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries.Energy Environ Sci2022;15:499-528

[132]

Zhang Y,Niu Z,Xie S.Design of Zn anode protection materials for mild aqueous Zn-ion batteries.Energy Mater2022;2:200012

[133]

Zhu C,Xu G,Gao G.Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries.Coord Chem Rev2023;485:215142

[134]

Zheng J,Zheng Y.AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes.Nano Lett2023;23:6156-63

[135]

Zheng J,Liu X.Simultaneous dangling bond and zincophilic site engineering of SiNx protective coatings toward stable zinc anodes.ACS Energy Lett2022;7:4443-50

[136]

Liu X,Yang A.High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries.Chin Chem Lett2023;34:107703

[137]

Wang C,Fang Y.Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries.J Am Chem Soc2015;137:3124-30

[138]

Luo W,Li F,Chao Z.Low-dimensional and high-crystallinity carbonyl cathodes prepared by physical vapor deposition for green aluminum organic batteries.ACS Appl Mater Interfaces2023;15:37433-41

[139]

Gong S,Zhao J.An electrolyte-rich nano-organic cathode constructs an ultra-high voltage Zinc-ion battery.Chem Eng J2023;476:146619

[140]

Ma G,Xu X.Enhancing organic cathodes of aqueous zinc-ion batteries via utilizing steric hindrance and electron cloud equalization.Chem Sci2023;14:12589-97 PMCID:PMC10646929

PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

/