X-ray dose effects and strategies to mitigate beam damage in metal halide perovskites under high brilliance X-ray photon sources

Francisco M. C. da Silva , Rodrigo Szostak , Maria G. D. Guaita , Verônica C. Teixeira , Ana F. Nogueira , Hélio C. N. Tolentino

Energy Materials ›› 2024, Vol. 4 ›› Issue (5) : 400058

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (5) :400058 DOI: 10.20517/energymater.2023.114
Article

X-ray dose effects and strategies to mitigate beam damage in metal halide perovskites under high brilliance X-ray photon sources

Author information +
History +
PDF

Abstract

Metal halide perovskites (MHP) suffer from photo-structural-chemical instabilities whose intricacy requires state-of-the-art tools to investigate their properties under various conditions. This study addresses the damage caused by focused X-ray beams on MHP through a correlative multi-technique approach. The damage after high-dose irradiation is noticeable in many ways: the loss of iodine and organic components, whose relative amount is reduced; the formation of an excavated area modifying the sample morphology; and an altered optical reflectivity indicating an optically inactive layer. The damage mechanism combines radiolysis and sputtering processes. Interestingly, the bulk underneath the excavated area maintains the initial halide proportion demonstrated by a stable photoluminescence emission energy. We also show that controlling the beam dose and environment is an excellent strategy to mitigate the dose harm. Hence, we combined a controlled X-ray dose with an inert N2 atmosphere to certify the conditions to probe MHP properties while mitigating damage efficiently. Finally, we applied optimized conditions in an X-ray ptychography experiment, reaching a 15-nm spatial resolution, an outcome that has never been attained in this class of materials.

Keywords

Metal halide perovskites / X-ray beam damage / perovskite solar cells / synchrotron radiation / X-ray nanoprobe

Cite this article

Download citation ▾
Francisco M. C. da Silva, Rodrigo Szostak, Maria G. D. Guaita, Verônica C. Teixeira, Ana F. Nogueira, Hélio C. N. Tolentino. X-ray dose effects and strategies to mitigate beam damage in metal halide perovskites under high brilliance X-ray photon sources. Energy Materials, 2024, 4(5): 400058 DOI:10.20517/energymater.2023.114

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen H,Li C.Regulating surface potential maximizes voltage in all-perovskite tandems.Nature2023;613:676-81

[2]

Park J,Yun HS.Controlled growth of perovskite layers with volatile alkylammonium chlorides.Nature2023;616:724-30

[3]

Kim JS,Park GS.Ultra-bright, efficient and stable perovskite light-emitting diodes.Nature2022;611:688-94

[4]

Sun Y,Dai L.Bright and stable perovskite light-emitting diodes in the near-infrared range.Nature2023;615:830-5

[5]

Deumel S,Gelinck G.High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites.Nat Electron2021;4:681-8

[6]

Perini CA,Stranks SD,Hoye RL.Pressing challenges in halide perovskite photovoltaics - from the atomic to module level.Joule2021;5:1024-30

[7]

Szostak R,de Freitas JN.In situ and operando characterizations of metal halide perovskite and solar cells: insights from lab-sized devices to upscaling processes.Chem Rev2023;123:3160-236

[8]

Correa-Baena JP,Brenner TM.Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites.Science2019;363:627-31

[9]

Frohna K,Macpherson S.Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells.Nat Nanotechnol2022;17:190-6

[10]

Macpherson S,Winchester AJ.Local nanoscale phase impurities are degradation sites in halide perovskites.Nature2022;607:294-300

[11]

Li N,Chen Z.Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors.Joule2020;4:1743-58

[12]

da Silva FMC,Teixeira VC.Disentangling X-ray and sunlight irradiation effects under a controllable atmosphere in metal halide perovskites.Solar RRL2023;7:2200898

[13]

Pfeiffer F.X-ray ptychography.Nat Photon2018;12:9-17

[14]

Stuckelberger ME,West BM.Effects of X-rays on perovskite solar cells.J Phys Chem C2020;124:17949-56

[15]

Svanström S,Sloboda T,Rensmo H.X-ray stability and degradation mechanism of lead halide perovskites and lead halides.Phys Chem Chem Phys2021;23:12479-89

[16]

Schulz P,Macleod BA,Loo Y.Electronic level alignment in inverted organometal perovskite solar cells.Adv Mater Inter2015;2:1400532

[17]

Ferrer Orri J,Johnstone D.Unveiling the interaction mechanisms of electron and X-ray radiation with halide perovskite semiconductors using scanning nanoprobe diffraction.Adv Mater2022;34:e2200383

[18]

Ma C,Lee SH.Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells.Science2023;379:173-8

[19]

Chen S,Zhao J.Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths.Sci Bull2020;65:1643-9

[20]

Rothmann MU,Zhu Y.Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams.Adv Mater2018;30:e1800629

[21]

Scalon L,Araújo FL.Improving the stability and efficiency of perovskite solar cells by a bidentate anilinium salt.JACS Au2022;2:1306-12 PMCID:PMC9241004

[22]

Tolentino HC,da Silva FM.The CARNAÚBA X-ray nanospectroscopy beamline at the Sirius-LNLS synchrotron light source: developments, commissioning, and first science at the TARUMÃ station.J Electron Spectrosc2023;266:147340

[23]

Lena FR,Cardoso FH.Commissioning of the cryogenic sample environment for the TARUMÃ station at the CARNAÚBA beamline at Sirius/LNLS.J Phys Conf Ser2022;2380:012108

[24]

Godden TM,Humphry MJ,Maiden AM.Ptychographic microscope for three-dimensional imaging.Opt Express2014;22:12513-23

[25]

Dierolf M,Thibault P.Ptychographic X-ray computed tomography at the nanoscale.Nature2010;467:436-9

[26]

Vijayakumar J,Mille N.Soft X-ray spectro-ptychography of boron nitride nanobamboos, carbon nanotubes and permalloy nanorods.J Synchrotron Radiat2023;30:746-57 PMCID:PMC10325009

[27]

Thibault P,Bunk O,Pfeiffer F.Probe retrieval in ptychographic coherent diffractive imaging.Ultramicroscopy2009;109:338-43

[28]

Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972;35:237-46. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2890261 [Last accessed on 3 June 2024]

[29]

Luke DR.Relaxed averaged alternating reflections for diffraction imaging.Inverse Probl2005;21:37-50

[30]

Fienup JR.Phase retrieval algorithms: a comparison.Appl Opt1982;21:2758-69

[31]

Fienup JR.Reconstruction of an object from the modulus of its Fourier transform.Opt Lett1978;3:27-9

[32]

Liu L,Tavares D. Status of SIRIUS operation with users. Proceedings of the 14th international particle accelerator conference; 2023 May 7-12; Venice, Italy.

[33]

Kirz J,Howells M.Soft X-ray microscopes and their biological applications.Q Rev Biophys1995;28:33-130

[34]

Jones MWM,James SA,McColl G.Radiation dose limits for bioanalytical X-ray fluorescence microscopy.Anal Chem2017;89:12168-75

[35]

Szostak R,Turren-Cruz SH.Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films.Sci Adv2019;5:eaaw6619 PMCID:PMC6814396

[36]

Ilett M,Freeman H.Analysis of complex, beam-sensitive materials by transmission electron microscopy and associated techniques.Philos Trans A Math Phys Eng Sci2020;378:20190601 PMCID:PMC7661278

[37]

Stenn K.Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration.J Ultrastruct Res1970;31:526-50

[38]

Tang X,May B.Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors.J Mater Chem A2016;4:15896-903

[39]

Egerton RF,Malac M.Radiation damage in the TEM and SEM.Micron2004;35:399-409

[40]

Godding JS,Lin Y,Snaith HJ.Oxidative passivation of metal halide perovskites.Joule2019;3:2716-31

[41]

Marchezi PE,Szostak R.Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions.J Mater Chem A2020;8:9302-12

[42]

Zhuang J,Yan F.Review on chemical stability of lead halide perovskite solar cells.Nanomicro Lett2023;15:84 PMCID:PMC10066059

[43]

Juarez-perez EJ,Qi Y.Thermal degradation of formamidinium based lead halide perovskites into sym -triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis.J Mater Chem A2019;7:16912-9

[44]

Juarez-perez EJ,Raga SR,Qi Y.Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis.Energy Environ Sci2016;9:3406-10

[45]

Hu M,Guo P.Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability.Nat Commun2020;11:151 PMCID:PMC6952449

PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

/