Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries

Jiaxuan Zhang , Amaia Lejarazu-Larrañaga , Fan Yang , Weilong Jiang , Mingruo Hu , Sheng Sui , Haolong Li , Fengjing Jiang

Energy Materials ›› 2024, Vol. 4 ›› Issue (4) : 400042

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (4) :400042 DOI: 10.20517/energymater.2023.113
Article

Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries

Author information +
History +
PDF

Abstract

Porous ion-selective membranes are promising alternatives for the expensive perfluorosulfonic acid membranes in redox flow batteries. In this work, novel non-ionic porous polyvinylidene fluoride-hexafluoro propylene membranes are designed for iron-lead single-flow batteries. The membranes are prepared using a multiple template approach, involving simultaneously using polyethylene glycol and dibutyl phthalate (DBP) as pore-forming templates. Their porous structure is finely tuned by adjusting the ratio of the two templates. As a result, dual-porous membranes bearing both macro and micropores are obtained. The H3520 membrane with modified porous structure attains a high proton conductivity of 43.5 mS·cm-1 and a relatively low ferric ion diffusion constant (8.61 × 10-8 cm2·min-1) and demonstrates the best balance between these performance-determining parameters (selectivity 5.04 × 105 S·min·cm-3, higher than that of the N115 membrane). Besides, performance tests of the iron-lead single-flow single cells equipped with the dual-porous membranes show a high energy efficiency, exceeding 87.2% at its rated current density, and outstanding cycling stability over 200 charge-discharge cycles. Altogether, the mixed template method presents a promising strategy to prepare high-performance and low-cost non-ionic membranes for redox flow batteries.

Keywords

Energy storage / redox flow battery / porous membrane / ion selectivity / cost-effective

Cite this article

Download citation ▾
Jiaxuan Zhang, Amaia Lejarazu-Larrañaga, Fan Yang, Weilong Jiang, Mingruo Hu, Sheng Sui, Haolong Li, Fengjing Jiang. Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries. Energy Materials, 2024, 4(4): 400042 DOI:10.20517/energymater.2023.113

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gür TM.Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage.Energy Environ Sci2018;11:2696-767

[2]

Sánchez-Díez E,Guarnieri M.Redox flow batteries: status and perspective towards sustainable stationary energy storage.J Power Sources2021;481:228804

[3]

Guillen GR,Li M.Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review.Ind Eng Chem Res2011;50:3798-817

[4]

Gong K,Grunewald JB.All-soluble all-iron aqueous redox-flow battery.ACS Energy Lett2016;1:89-93

[5]

Sinclair N,Kellamis C.Membrane considerations for the all-iron hybrid flow battery.J Electrochem Soc2023;170:050516

[6]

Jiang F,Guo D.All-iron semi-flow battery based on Fe3O4@CNTs 3-dimensional negative electrode.Electrochim Acta2023;445:142064

[7]

Manohar AK,Plichta E,Rawlings S.A high efficiency iron-chloride redox flow battery for large-scale energy storage.J Electrochem Soc2016;163:A5118

[8]

Jiang W,Zhang J,Liu L.Novel strategy for cathode in iron-lead single-flow battery: electrochemically modified porous graphite plate electrode.J Energy Storage2024;80:110274

[9]

Lu W,Zhao Y,Zhang H.Porous membranes in secondary battery technologies.Chem Soc Rev2017;46:2199-236

[10]

Xiong P,Chen Y,Yu G.A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries.Angew Chem Int Ed Engl2021;60:24770-98

[11]

Düerkop D,Schilde C,Schmiemann A.Polymer membranes for all-vanadium redox flow batteries: a review.Membranes2021;11:214 PMCID:PMC8003036

[12]

Zhang H,Zhang F,Li Y.Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application.Energy Environ Sci2013;6:776-81

[13]

Ye J,Li H.Chapter 5 - Recent advances in high-performance membranes for vanadium redox flow battery. In: 60 years of the loeb-sourirajan membrane. 2022. pp. 131-54.

[14]

Ahmad AL,Hamid NA.Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane.Polymer2018;142:330-6

[15]

Liu L,Zhang J.Boosting ion conduction in polymer blends by tailoring polymer phase separation.J Power Sources2023;569:233005

[16]

Wang F,Jiang F.Dual-porous structured membrane for ion-selection in vanadium flow battery.J Power Sources2021;506:230234

[17]

Lin YC,Yeh CH.Preparation of cellulose acetate/PP composite membrane for vanadium redox flow battery applications.Rare Metals2011;30:22-6

[18]

Chen D,Li X.Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application.J Power Sources2017;353:11-8

[19]

Che X,Ren X.Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery.J Membrane Sci2020;611:118359

[20]

Zhou X,Zhong Y,Jiang F.Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries.J Membrane Sci2020;595:117614

[21]

Gubler L,Schneider A.Composite membranes containing a porous separator and a polybenzimidazole thin film for vanadium redox flow batteries.J Electrochem Soc2020;167:100502

[22]

Hansen CM.Hansen solubility parameters: a user’s handbook. 2nd ed. Boca Raton: CRC Press; 2007.

[23]

Xue R,Wang F.Towards cost-effective proton-exchange membranes for redox flow batteries: a facile and innovative method.J Power Sources2020;449:227475

[24]

Krowne CM.Physics, electrochemistry, chemistry, and electronics of the vanadium redox flow battery by analyzing all the governing equations.Phys Chem Chem Phys2024;26:2823-62

[25]

Krowne CM.Nernst equations and concentration chemical reaction overpotentials for VRFB operation.J Electrochem Soc2023;170:100534

[26]

Zhang Z,Wu K.Research on iron-lead semi-flow battery based on 3D solid electrode.Acta Chimica Sinica2022;80:56-62

[27]

Bottino A,Munari S.Solubility parameters of poly(vinylidene fluoride).J Polym Sci B Polym Phys1988;26:785-94

[28]

Polymer handbook. 4th ed. New York: John Wiley & Sons. 1999. Available from: http://nguyen.hong.hai.free.fr/EBOOKS/SCIENCE%20AND%20ENGINEERING/MECANIQUE/MATERIAUX/COMPOSITES/Polymer_Handbook/66286_fm.pdf. [Last accessed on 9 May 2024]

[29]

Zeng M,Xu C.Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane.J Membrane Sci2004;230:175-81

[30]

Jiang B,Yu L,Xi J.A comparative study of Nafion series membranes for vanadium redox flow batteries.J Membrane Sci2016;510:18-26

[31]

Zhao J,Sun L,Lu H.Novel low-cost cation exchange membrane containing hydrophilic cross-linked structure for enhanced electrodialysis properties.J Taiwan Inst Chem Eng2019;100:269-76

[32]

Huskinson B,Suh C.A metal-free organic-inorganic aqueous flow battery.Nature2014;505:195-8

PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

/