A theoretical review of passivation technologies in perovskite solar cells

Oscar J. Allen , Jian Kang , Shangshu Qian , Jack J. Hinsch , Lei Zhang , Yun Wang

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400037

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400037 DOI: 10.20517/energymater.2023.111
Review

A theoretical review of passivation technologies in perovskite solar cells

Author information +
History +
PDF

Abstract

Perovskite solar cells have demonstrated remarkable progress in recent years. However, their widespread commercialization faces challenges arising from defects and environmental vulnerabilities, leading to limitations in energy conversion efficiency and device stability. To overcome these hurdles, passivation technologies have emerged as a promising avenue. These passivators are strategically applied at the interface between perovskite absorbers and charge transport layers to mitigate the adverse effects of defects and environmental factors. While prior reviews have predominantly focused on experimental observations, a comprehensive theoretical understanding of the passivators has been lacking. This review focuses on recent advancements in first-principles density functional theory studies that delve into the fundamental properties of passivators and their intricate interactions with perovskite materials and charge transport layers. By exploring the atomic-level roles of passivators, this review elucidates their impact on critical parameters such as open circuit voltage (Voc), short circuit current density (Jsc), fill factor, and the overall stability of perovskite solar cells. The synthesis of theoretical insights from these studies can serve as guidelines for the molecular design of passivators with the ultimate objective of advancing the commercialization of high-performance perovskite solar cells.

Keywords

Perovskite solar cells / passivation / density functional theory / open circuit voltage / short circuit current density / fill factor / stability

Cite this article

Download citation ▾
Oscar J. Allen, Jian Kang, Shangshu Qian, Jack J. Hinsch, Lei Zhang, Yun Wang. A theoretical review of passivation technologies in perovskite solar cells. Energy Materials, 2024, 4(3): 400037 DOI:10.20517/energymater.2023.111

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jesper Jacobsson T,Pazoki M.Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells.Energy Environ Sci2016;9:1706-24

[2]

Park N.Perovskite solar cells: an emerging photovoltaic technology.Mater Today2015;18:65-72

[3]

Tan Q,Luo G.Inverted perovskite solar cells using dimethylacridine-based dopants.Nature2023;620:545-51

[4]

Yang Z,Wu S.Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module.Sci Adv2021;7:eabg3749 PMCID:PMC8087413

[5]

Yang F,Dong L.Upscaling solution-processed perovskite photovoltaics.Adv Energy Mater2021;11:2101973

[6]

Gao F,Zhang X.Recent progresses on defect passivation toward efficient perovskite solar cells.Adv Energy Mater2020;10:1902650

[7]

Ball JM.Defects in perovskite-halides and their effects in solar cells.Nat Energy2016;1:16149

[8]

You S,Gao J.Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells.Nat Energy2023;8:515-25

[9]

Meng L,Yang Y.Addressing the stability issue of perovskite solar cells for commercial applications.Nat Commun2018;9:5265 PMCID:PMC6288125

[10]

Wang R,Duan Y,Xue J.A review of perovskites solar cell stability.Adv Funct Mater2019;29:1808843

[11]

Li Z,Wu X.Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells.Science2022;376:416-20

[12]

Abdi-Jalebi M,Cacovich S.Maximizing and stabilizing luminescence from halide perovskites with potassium passivation.Nature2018;555:497-501

[13]

Zhan Y,Chen W.Elastic lattice and excess charge carrier manipulation in 1D-3D Perovskite solar cells for exceptionally long-term operational stability.Adv Mater2021;33:e2105170

[14]

Luo L,Wang Z.Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance.Nat Energy2023;8:294-303

[15]

Li Y,Zheng C.Plant-derived l -theanine for ultraviolet/ozone resistant perovskite photovoltaics.Adv Energy Mater2023;13:2203190

[16]

Park J,Yun HS.Controlled growth of perovskite layers with volatile alkylammonium chlorides.Nature2023;616:724-30

[17]

Li M,Chang J.Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells.Nat Commun2023;14:573 PMCID:PMC9895431

[18]

Zhang Z,Meng K,Chen G.Rationalization of passivation strategies toward high-performance perovskite solar cells.Chem Soc Rev2023;52:163-95

[19]

Xia J,Gu H.Surface passivation toward efficient and stable perovskite solar cells.Energy Environ Mater2023;6:e12296

[20]

Azaid A,Alaqarbeh M.Design of a D-Di-π-A architecture with different auxiliary donors for dye-sensitized solar cells: density functional theory/time-dependent-density functional theory study of the effect of secondary donors.Advcd Theory Sims2023;6:2300054

[21]

Hassan T,Hussain R,Khan MU.Molecular engineering of Pyran-fused acceptor-donor-acceptor-type non-fullerene acceptors for highly efficient organic solar cells - a density functional theory approach.J Phys Org Chem2023;36:e4507

[22]

Kagdada HL,Roondhe V.Exploring a-site cation variations in dion-jacobson two-dimensional halide perovskites for enhanced solar cell applications: a density functional theory study.Adv Energy Sustain Res2024;5:2300147

[23]

Saloni S,Chakraborty T.A computational study of CuCrX2 (X = S, Se, Te) for intermediate band solar cell: conceptual density functional theory approach.J Mol Graph Model2023;124:108534

[24]

Setsoafia DDY,Mehdizadeh-rad H,Singh J.Density functional theory simulation of optical and photovoltaic properties of DRTB-T donor-based organic solar cells.Int J Energy Res2023;2023:1-12

[25]

Srivastava A,Anthoniappen J.Investigation on thermodynamic properties of novel Ag2SrSn(S/Se)4 quaternary chalcogenide for solar cell applications: a density functional theory study. In: Lenka TR, Misra D, Fu L, editors. Micro and nanoelectronics devices, circuits and systems. Singapore: Springer Nature; 2023. pp. 103-10.

[26]

Taouali W,Sindhoo Nangraj A.Density-functional theory (DFT) and time-dependent DFT study of the chemical and physical origins of key photoproperties of end-group derivatives of a nonfullerene acceptor molecule for bulk heterojunction organic solar cells.J Comput Chem2023;44:2130-48

[27]

Kaiser W,Alothman AA.First-principles molecular dynamics in metal-halide perovskites: contrasting generalized gradient approximation and hybrid functionals.J Phys Chem Lett2021;12:11886-93

[28]

Ohto T,Imoto S.Structure and dynamics of water at the water-air interface using first-principles molecular dynamics simulations within generalized gradient approximation.J Chem Theory Comput2019;15:595-602

[29]

Pandech N,Palakawong N,Lambrecht WRL.Effects of the van der Waals interactions on structural and electronic properties of CH3NH3(Pb,Sn)(I,Br,Cl)3 halide perovskites.ACS Omega2020;5:25723-32 PMCID:PMC7557212

[30]

Wang Y,Hush NS.Successful a priori modeling of CO adsorption on Pt(111) using periodic hybrid density functional theory.J Am Chem Soc2007;129:10402-7

[31]

Gusakova J,Shiau LL.Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e Method).Physica Status Solidi2017;214:1700218

[32]

Borlido P,Huran AW,Marques MAL.Large-scale benchmark of exchange-correlation functionals for the determination of electronic band gaps of solids.J Chem Theory Comput2019;15:5069-79 PMCID:PMC6739738

[33]

Wang Y,Liu P,Zhao H.Engineering the band gap of bare titanium dioxide materials for visible-light activity: a theoretical prediction.RSC Adv2013;3:8777-82

[34]

Zaki NH, Ali AMM, Mohamad Taib MF, Wan Ismail WIN, Sepeai S, Ramli A. Dispersion-correction density functional theory (DFT+D) and spin-orbit coupling (SOC) method into the structural, electronic, optical and mechanical properties of CH3NH3PbI3.Comput Condens Matter2023;34:e00777

[35]

Shi T,Hong F,Yan Y.Unipolar self-doping behavior in perovskite CH3NH3PbBr3.Appl Phys Lett2015;106:103902

[36]

Huang Y,Xu W,Yin WJ.Halide perovskite materials for solar cells: a theoretical review.Acta Phys Sin2017;33:1730-51

[37]

Yin W,Kang J,Wei S.Halide perovskite materials for solar cells: a theoretical review.J Mater Chem A2015;3:8926-42

[38]

Amat A,Ronca E.Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.Nano Lett2014;14:3608-16

[39]

Bhattacharya S.Spin-orbit-coupling-induced band splitting in two-dimensional hybrid organic-inorganic perovskites: Importance of organic cations.Phys Rev Mater2023;7:055001

[40]

Ronca E,Fantacci S.Time-dependent density functional theory modeling of spin-orbit coupling in ruthenium and osmium solar cell sensitizers.J Phys Chem C2014;118:17067-78

[41]

Even J,Jancu J.Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications.J Phys Chem Lett2013;4:2999-3005

[42]

Idrissi S,Bahmad L.DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications.Chem Phys Lett2021;766:138347

[43]

Das T,Pacchioni G.Density functional theory estimate of halide perovskite band gap: when spin orbit coupling helps.J Phys Chem C2022;126:2184-98

[44]

Alsalamah IM,Alsaif NA,Lakshminarayana G.Exploring the structural properties and the optoelectronic features of RbPbX3 (X = Cl, F) perovskite crystals for solar cells solicitations: showcasing the DFT predictions.Chem Phys2023;573:111978

[45]

Borges-martínez M,Schott E.Computational design and properties elucidation of new (FAPbI3)1-x-y(MAPbBr3)y(CsPbBr3)x photoactive systems for their application in perovskite solar cells.Mater Today Commun2023;34:105324

[46]

Arfaoui Y, Khenfouch M, Habiballah N. A DFT and time-dependent DFT investigation of the structural, electronic and optical properties of lead-free FAMgI3 perovskite for photovoltaic applications.J Electron Mater2024;53:881-90

[47]

Glockzin B,Karmakar A.Alkali tin halides: exploring the local structure of A2SnX6 (A = K, Rb; X = Cl, Br, I) compounds using solid-state NMR and DFT computations.J Phys Chem C2023;127:7284-98

[48]

Graupner DR.Size effects on polaron formation in lead chloride perovskite thin films. Mol Phys 2023

[49]

Haroon M,Akhtar T,Ashfaq M.Relativistic two-component time dependent density functional studies and Hirshfeld surface analysis of halogenated arylidenehydrazinylthiazole derivatives.J Mol Structure2023;1287:135692

[50]

Idrissi S,Bahmad L.Study of the solar perovskites: XZnF3 (X = Ag, Li or Na) by DFT and TDDFT methods.J Korean Ceram Soc2023;60:424-33

[51]

Islam MR,Mojumder MRH,Hossain MK.Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl3 (A = K, Rb, and Cs).Jpn J Appl Phys2023;62:011002

[52]

Javed M,Benkraouda M,Najar A.Strained induced metallic to semiconductor transitions in 2D Ruddlesden Popper perovskites: a GGA + SOC approach.Appl Surf Sci2023;627:157244

[53]

Kumar D.Enhanced optical and thermoelectric properties of Ti doped half - Heusler alloy NbRuP: a first principles study.Solid State Commun2023;366-7:115179

[54]

Kumar G,Bhattarai S,Samajdar DP.Exploration of the photovoltaic properties of oxide-based double perovskite Bi2FeCrO6 using an amalgamation of DFT with spin-orbit coupling effect and SCAPS-1D simulation approaches.New J Chem2023;47:18640-58

[55]

Laghzaoui S,Laamara RA.Robust half-metallic ferromagnet in doped double perovskite Sr2TiCoO6 by rare-earth elements for photovoltaic and thermoelectric conversion: a DFT method.J Phys Chem Solid2023;183:111639

[56]

Li S,Wang Z.Theoretical studies of new iridium-based terpolymer donors for high-efficiency triplet-material-based organic photovoltaics: Incorporation of different iridium(III) complexes.Mater Chem Phys2023;302:127780

[57]

Moaddeli M,Grünebohm A.Electronic and structural properties of mixed-cation hybrid perovskites studied using an efficient spin-orbit included DFT-1/2 approach.Phys Chem Chem Phys2023;25:25511-25

[58]

Mokkath J.Tailoring the infrared resonances of sulfide perovskites.Mater Today Chem2023;30:101589

[59]

Muthumari M,Veluswamy P.First principles calculations to investigate structural, electronic, mechanical, thermoelectric and optical properties of Bi- and Se-doped SnTe.J Phys Chem Solid2023;176:111232

[60]

Rahman MF,Islam MR.Unraveling the strain-induced and spin-orbit coupling effect of novel inorganic halide perovskites of Ca3AsI3 using DFT.AIP Adv2023;13:085329

[61]

Raju N, Tripathi D, Lahiri S, Thangavel R. Heat reflux sonochemical synthesis of Cu3BiS3 quantum dots: experimental and first-principles investigation of spin-orbit coupling on structural, electronic, and optical properties.Solar Energy2023;259:107-18

[62]

Supatutkul C,Laosiritaworn Y.Quasiparticle band structures of Cs2B+B3+Br6 lead-free halide double perovskites.Mater Today Commun2023;36:106751

[63]

Yami NFNA,Nawawi WI.Structural, electronic, and optical properties of lower-dimensional hybrid perovskite lead-iodide frameworks + SOC via density functional theory.Emergent Mater2023;6:999-1007

[64]

Liu J,Chen S.Effects of compositional engineering and surface passivation on the properties of halide perovskites: a theoretical understanding.Phys Chem Chem Phys2020;22:19718-24

[65]

Heyd J,Ernzerhof M.Erratum: “Hybrid functionals based on a screened Coulomb potential”.J Chem Phys2006;124:219906

[66]

West AR. Solid state chemistry and its applications. 2nd ed. Hoboken: John Wiley & Sons; 2022.

[67]

Zhilyakov LA,Pokhil GP.Condition of formation of 2D coulomb crystal on the surface of dielectric.High Temp2008;46:721-4

[68]

Umari P,De Angelis F.Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications.Sci Rep2014;4:4467 PMCID:PMC5394751

[69]

Li H,Deng J.Intermolecular π-π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells.Adv Mater2020;32:e1907396

[70]

Zheng Y,Ma J.Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: mediated by uneven ion flux.Sci Bull2024;69:317-9

[71]

Zhao H,Ojala S.Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications.J Mater Chem A2023;11:22656-87

[72]

Goyal A, Singh PP, Mondal T. Investigating the role of Co and Fe in bimetallic perovskite catalysts (LaNiO3) for steam reforming of Bio-Oil model oxygenates: a DFT study. Carbon 2023;2:2.606. Available from: https://oxford-abstracts.s3.amazonaws.com/f0e3a240-bf65-43be-8a7c-c42d93fa4e3e.pdf [Last accessed on 22 Apr 2024]

[73]

Bayendang NP,Balyan V.Thermoelectric generators (TEGs) modules-optimum electrical configurations and performance determination.AIMS Energy2022;10:102-30

[74]

Imai Y,Ito K.Reduction of LSI maximum power consumption with standard cell library of stack structured cells.IEICE Trans Fund2022;E105.A:487-96

[75]

Keller J,Stolt L,Edoff M.Rubidium fluoride absorber treatment for wide-gap (Ag,Cu)(In,Ga)Se2 solar cells.Solar RRL2022;6:2200044

[76]

Kulkarni V,Krishnan S.Performance analysis of an integrated battery electric vehicle thermal management.J Energy Stor2022;55:105334

[77]

Okedu KE.Comparative study of the internal dynamic failures of grid-connected solar PVs: the case of the oman power network.Front Energy Res2022;10:858803

[78]

Mozaffari S.A theoretical study on internal losses of heat generation in inorganic metal oxide charge transporting layers-based inverted PSC.Opt Quant Electron2023;55:826

[79]

Li H,Wang L.Cooperative catalysis of polysulfides in lithium-sulfur batteries through adsorption competition by tuning cationic geometric configuration of dual-active sites in spinel oxides.Angew Chem Int Ed2023;62:e202216286

[80]

Xia J,Nazeeruddin MK.Efficient and stable perovskite solar cells by tailoring of interfaces.Adv Mater2023;35:e2211324

[81]

Pratheek M,Bhattacharya S,Predeep P.Recent progress on defect passivation in perovskites for solar cell application.Mater Sci Energy Technol2021;4:282-9

[82]

Zhu R,Wang D,Wu Z.Review of defect passivation for NiOx-based inverted perovskite solar cells.ACS Appl Energy Mater2023;6:2098-121

[83]

Zhang Y,Liu S.Composition engineering of perovskite single crystals for high-performance optoelectronics.Adv Funct Mater2023;33:2210335

[84]

Che Y,Duan Y.Hydrazide derivatives for defect passivation in pure CsPbI3 Perovskite Solar Cells.Angew Chem Int Ed2022;61:e202205012

[85]

Zhang Z,Xiao Liu X.Surface-anchored acetylcholine regulates band-edge states and suppresses ion migration in a 21%-efficient quadruple-cation perovskite solar cell.Small2022;18:e2105184

[86]

Dong Y,Dong W.Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells.Adv Energy Mater2022;12:2200417

[87]

Batmunkh M,Shearer CJ.Carbon nanotubes in TiO2 nanofiber photoelectrodes for high-performance perovskite solar Cells.Adv Sci2017;4:1600504 PMCID:PMC5396161

[88]

Chavan RD,Tavakoli MM.Band alignment and carrier recombination roles on the open circuit voltage of ETL-passivated perovskite photovoltaics.Intl J Energy Res2022;46:6022-30

[89]

Jiang Q,Xian Y.Surface reaction for efficient and stable inverted perovskite solar cells.Nature2022;611:278-83

[90]

Bati AS,Hao M.Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells.Cell Rep Phys Sci2021;2:100598

[91]

Zhang H,Xiang W.Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells.Adv Mater2023;35:e2301140

[92]

Zhang H,Zuo X.Fluorine-containing passivation layer via surface chelation for inorganic perovskite solar cells.Angew Chem Int Ed2023;62:e202216634

[93]

Batmunkh M,Wu C.Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells.Small Method2019;3:1800521

[94]

Macdonald TJ,Xu W.Phosphorene nanoribbon-augmented optoelectronics for enhanced hole extraction.J Am Chem Soc2021;143:21549-59

[95]

Allen OJ,Wang Y.First-principles study of group VA monolayer passivators for perovskite solar cells.ACS Appl Nano Mater2023;6:4279-87

[96]

Cheng L,Liu Y.The Optimal electronic structure for high-mobility 2D semiconductors: exceptionally high hole mobility in 2D antimony.J Am Chem Soc2019;141:16296-302

[97]

Li T,Lin R.Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems.Nat Energy2023;8:610-20

[98]

Xu T,Yang J.Interface modification for efficient and stable inverted inorganic perovskite solar cells.Adv Mater2023;35:e2303346

[99]

Qiao HW,Wang Y.A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor.Adv Mater2019;31:e1804217

[100]

Zhang B,Sun Z.Buried guanidinium passivator with favorable binding energy for perovskite solar cells.ACS Energy Lett2023;8:1848-56

[101]

Liu Q,Li D.Dilute alloying to implant activation centers in nitride electrocatalysts for lithium-sulfur batteries.Adv Mater2023;35:e2209233

[102]

Fei C,Wang M.Lead-chelating hole-transport layers for efficient and stable perovskite minimodules.Science2023;380:823-9

[103]

Xie P,Qiao Y.Radical reinforced defect passivation strategy for efficient and stable MAPbI3 perovskite solar cells fabricated in air using a green anti-solvent process.Chem Eng J2023;462:142328

[104]

Tan S,Yavuz I.Stability-limiting heterointerfaces of perovskite photovoltaics.Nature2022;605:268-73

[105]

Yang S,Liu P,Zhao HJ.Functionalization of perovskite thin films with moisture-tolerant molecules.Nat Energy2016;1:15016

[106]

He J,Hou Y,Yang S.Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells.Nat Commun2020;11:4237 PMCID:PMC7447778

[107]

Zhang L,Wu B,Li J.Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications.J Mol Graph Model2019;89:96-101

PDF

238

Accesses

0

Citation

Detail

Sections
Recommended

/