Porous array of BaLi4 alloy microchannels enforced carbon cloth for a stable Li composite anode

Zihao Wang , Tao Chen , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jingze Li

Energy Materials ›› 2024, Vol. 4 ›› Issue (3) : 400031

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (3) :400031 DOI: 10.20517/energymater.2023.103
Article

Porous array of BaLi4 alloy microchannels enforced carbon cloth for a stable Li composite anode

Author information +
History +
PDF

Abstract

Integrating metallic lithium (Li) with a three-dimensional (3D) host is a popular strategy for long-life Li composite anodes, where the structure and physicochemical nature of the framework are critical for the electrochemical performance. Herein, Li-rich dual-phase barium (Ba)-based alloy composed of BaLi4 intermetallic compounds and Li metal phases is thermally incorporated into commercial carbon cloth sheets to develop Li-Ba alloy composite (LBAC) anodes featuring a porous array of BaLi4 microchannels as the built-in 3D skeleton. Doping of metallic Ba can greatly lower the surface tension of liquid Li and improve the wettability of the molten Li-Ba alloy toward the carbon cloth substrate. Moreover, LBAC benefits from the superior lithiophilicity and the porous architecture of BaLi4 skeleton nested in a conductive carbon fiber matrix, leading to stable cycling performance by confining Li stripping/plating in microchannels network of BaLi4 alloy framework and dissipating high current densities. As a result, the LBAC symmetrical cells can run stably for 1,000 h under 1 mA cm-2 and 1 mA h cm-2, and the capacity retention can retain 93.3% after 300 cycles in the full cell with areal capacity of 2.45 mA h cm-2. This work offers a smart designing strategy of 3D Li alloy composite anodes by introducing porous and lithiophilic alloy scaffold as sub-framework of the carbon hosting anode, promising the prospect of Li metal batteries for future applications.

Keywords

Li composite anode / carbon cloth / Li-Ba alloy / wettability / microchannels

Cite this article

Download citation ▾
Zihao Wang, Tao Chen, Zhicui Song, Jianxiong Xing, Aijun Zhou, Jingze Li. Porous array of BaLi4 alloy microchannels enforced carbon cloth for a stable Li composite anode. Energy Materials, 2024, 4(3): 400031 DOI:10.20517/energymater.2023.103

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park S,Yun YS.Advances in the design of 3D-structured electrode materials for lithium-metal anodes.Adv Mater2020;32:2002193

[2]

Kang S,Gao W.Toward safer lithium metal batteries: a review.Energy Mater2023;3:300043

[3]

Ghazi ZA,Sun C.Key aspects of lithium metal anodes for lithium metal batteries.Small2019;15:e1900687

[4]

Zhang X,Zhou Z.Towards practical lithium-metal anodes.Chem Soc Rev2020;49:3040-71

[5]

Jin C,Chen M.Armed lithium metal anodes with functional skeletons.Mater Today Nano2021;13:100103

[6]

Wang B,Huang S,Li X.Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries.J Mater Chem A2021;9:6070-88

[7]

Wang C,Ren L.Controlling Li ion flux through materials innovation for dendrite-free lithium metal anodes.Adv Funct Mater2019;29:1905940

[8]

Zhao Y,Wu F,Li L.Anode interface engineering and architecture design for high-performance lithium-sulfur batteries.Adv Mater2019;31:e1806532

[9]

Peng HJ,Zhu L.3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium - sulfur batteries.Adv Funct Mater2016;26:6351-8

[10]

Shi J,Chen Z.Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries.Energy Mater2023;3:300036

[11]

Zhong Y,Tadé MO.Ionically and electronically conductive phases in a composite anode for high-rate and stable lithium stripping and plating for solid-state lithium batteries.ACS Appl Mater Interfaces2022;14:38786-94

[12]

Yue XY,Wang QC.Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries.Energy Stor Mater2019;21:180-9

[13]

Wang R,He X.Three-dimensional lithiophilic Cu@Sn nanocones for dendrite-free lithium metal anodes.Sci China Mater2021;64:1087-94

[14]

Wang Z,Liu Y.LixCu alloy nanowires nested in Ni foam for highly stable Li metal composite anode.Sci China Mater2022;65:69-77

[15]

Chi SS,Song WL,Zhang Q.Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode.Adv Funct Mater2017;27:1700348

[16]

Eom JY,Kang JH,Moon J.Rational design of a 3D Li-metal electrode for high-energy lithium batteries.ACS Appl Energy Mater2021;4:1936-41

[17]

Jia W,Qu S.ZnF2 coated three dimensional Li-Ni composite anode for improved performance.J Materiomics2019;5:176-84

[18]

Huang G,Guo P.In situ constructing lithiophilic NiFx nanosheets on Ni foam current collector for stable lithium metal anode via a succinct fluorination strategy.Chem Eng J2020;395:125122

[19]

Wang Q,Yang J.Stable Li metal anode with protected interface for high-performance Li metal batteries.Energy Stor Mater2018;15:249-56

[20]

Li X,Zhang S,Chen L.Improved lithium deposition on silver plated carbon fiber paper.Nano Energy2019;66:104144

[21]

Xiao J,Liu C.In situ growing chromium oxynitride nanoparticles on carbon nanofibers to stabilize lithium deposition for lithium metal anodes.Small2020;16:2003827

[22]

Chen X,Shang M.Ironing controllable lithium into lithiotropic carbon fiber fabric: a novel Li-metal anode with improved cyclability and dendrite suppression.ACS Appl Mater Interfaces2019;11:21584-92

[23]

Jia W,Wang Y.Porous equipotential body with heterogeneous nucleation sites: a novel 3D composite current collector for lithium metal anode.Electrochim Acta2019;309:460-8

[24]

Luo L,Yaghoobnejad Asl H.A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell.Adv Mater2019;31:e1904537

[25]

Wang Z,Song Z.Ultrathin Li-rich Li-Cu alloy anode capped with lithiophilic LiC6 headspace enabling stable cyclic performance.J Colloid Interface Sci2023;643:205-13

[26]

Niu J,Channa AI.Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization.RSC Adv2020;10:27235-41 PMCID:PMC9055514

[27]

Wang Y,Du Z.A lithium-carbon nanotube composite for stable lithium anodes.J Mater Chem A2017;5:23434-9

[28]

Zheng ZJ,Guo ZP.Recent progress in designing stable composite lithium anodes with improved wettability.Adv Sci2020;7:2002212 PMCID:PMC7675197

[29]

Wang SH,Dong W.Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes.Nat Commun2019;10:4930 PMCID:PMC6821877

[30]

Wang J,Xie J.Fundamental study on the wetting property of liquid lithium.Energy Stor Mater2018;14:345-50

[31]

Shin HJ,Kim J,Ha HY.Near-perfect suppression of Li dendrite growth by novel porous hollow carbon fibers embedded with ZnO nanoparticles as stable and efficient anode for Li metal batteries.Chem Eng J2023;464:142713

[32]

Niu C,Xu W.Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions.Nat Nanotechnol2019;14:594-601

[33]

Zhu R,Fadillah L.A lithiophilic carbon scroll as a Li metal host with low tortuosity design and “Dead Li” self-cleaning capability.J Mater Chem A2021;9:13332-43

[34]

Yue XY,Wang WW.Wettable carbon felt framework for high loading Li-metal composite anode.Nano Energy2019;60:257-66

[35]

Wang L,Guan Y.ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes.Energy Stor Mater2018;11:191-6

[36]

Le T,Liang Q,Kang F.A fishing-net-like 3D host for robust and ultrahigh-rate lithium metal anodes.Small2021;17:e2007231

[37]

Chen XR,Zhu C.A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries.Adv Energy Mater2019;9:1901932

[38]

Deng W,Zhou X,Liu Z.Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes.ACS Appl Mater Interfaces2018;10:20387-95

[39]

Cao J,Li W.Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes.Mater Today Energy2021;20:100663

[40]

Gong YJ,Kim H.Advanced Li metal anode by fluorinated metathesis on conjugated carbon networks.Energy Environ Sci2021;14:940-54

[41]

Wang X,Wu Y.Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode.Nano Res2019;12:525-9

[42]

Zhang P,Liu X.3D lithiophilic “Hairy” Si nanowire arrays @ carbon scaffold favor a flexible and stable lithium composite anode.ACS Appl Mater Interfaces2019;11:44325-32

[43]

Zhang YJ,Wang XL.Composite Li metal anode with vertical graphene host for high performance Li-S batteries.J Power Sources2018;374:205-10

[44]

Liu T,Li C.Unusual conformal Li plating on alloyable nanofiber frameworks to enable dendrite suppression of Li metal anode.ACS Appl Energy Mater2019;2:4379-88

[45]

Zhang R,Shen X.Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries.Joule2018;2:764-77

[46]

Go W,Park J.Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes.Nano Lett2019;19:1504-11

[47]

Feng YQ,Wang CY.A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes.Nano Energy2020;73:104731

[48]

Fang Y,Zhu K.Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes.ACS Nano2019;13:14319-28

[49]

Liu S,Zhong Y.3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode.Adv Energy Mater2018;8:1702322

[50]

Kwon H,Roh Y.An electron-deficient carbon current collector for anode-free Li-metal batteries.Nat Commun2021;12:5537 PMCID:PMC8452779

[51]

Patrike A,Wahid M,Shelke MV.Ice-colloidal templated carbon host for highly efficient, dendrite free Li metal anode.Carbon2021;179:256-65

[52]

Pathak R,Wu F.Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries.Energy Stor Mater2021;41:448-65

[53]

Wang C,Zhang L.Universal soldering of lithium and sodium alloys on various substrates for batteries.Adv Energy Mater2018;8:1701963

[54]

Yang C,Ping W.An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries.Adv Mater2019;31:e1804815

[55]

Jia W,Li J.A dual-phase Li-Ca alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance.J Mater Chem A2019;7:22377-84

[56]

Jia W,Wang Z,Hu YS.Dendrite-free dual-phase Li-Ba alloy anode enabled by ordered array of built-in mixed conducting microchannels.Small2023;20:2308279

[57]

Wang Z,Xing J.Li-Ca Alloy composite anode with ant-nest-like lithiophilic channels in carbon cloth enabling high-performance Li metal batteries.Research2022;2022:9843093

PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

/