Modulation of physical and chemical connections between SiOx and carbon for high-performance lithium-ion batteries
Kaiyuan Zhang , Jiarui Xing , Huili Peng , Jichao Gao , Shuheng Ai , Qiwang Zhou , Di Yang , Xin Gu
Energy Materials ›› 2024, Vol. 4 ›› Issue (4) : 400043
Modulation of physical and chemical connections between SiOx and carbon for high-performance lithium-ion batteries
SiOx is an encouraging anode material for high-energy lithium-ion batteries owing to the following unique characteristics: a relatively high theoretical capacity, low operating potential, ample resource availability, and, most importantly, lower volume changes compared to Si. However, its utilization has been hindered by a significant ~200% volume change during lithiation and low conductivity, leading to the breakdown of anode materials and accelerated capacity degradation. This study presents a novel SiOx/G/C composite comprising SiOx nanoparticles, graphite, and carbon nanotubes fabricated through a simple ball milling and annealing process. This composite features a dual-carbon framework interconnected with SiOx via C–O–Si bonds, enhancing reaction kinetics and accommodating volume fluctuations. These enhancements translate into remarkable advancements in cycling stability and rate performance. Specifically, as-prepared SiOx/G/C exhibits a high capacity retention of
SiOx anode / lithium-ion batteries / silicon-carbon composite / dual-carbon engineering / chemical binding
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
/
| 〈 |
|
〉 |