Understanding of working mechanism of lithium difluoro(oxalato) borate in Li||NCM85 battery with enhanced cyclic stability

Xuerui Yang , Yaxin Huang , Jianhui Li , Weilin Huang , Wen Yang , Changquan Wu , Shijun Tang , Fucheng Ren , Zhengliang Gong , Naigen Zhou , Yong Yang

Energy Materials ›› 2023, Vol. 3 ›› Issue (4) : 300029

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (4) :300029 DOI: 10.20517/energymater.2023.10
Article

Understanding of working mechanism of lithium difluoro(oxalato) borate in Li||NCM85 battery with enhanced cyclic stability

Author information +
History +
PDF

Abstract

Despite the significant advances achieved in recent years, the development of efficient electrolyte additives to mitigate the performance degradation during long-term cycling of high-energy density lithium||nickel-rich (Li||Ni-rich) batteries remains a significant challenge. To achieve a rational design of electrolytes and avoid unnecessary waste of resources due to trial and error, it is crucial to have a comprehensive understanding of the underlying mechanism of key electrolyte components, including salts, solvents, and additives. Herein, we present the utilization of lithium difluoro(oxalate) borate (B) (LiDFOB), a B-containing lithium salt, as a functional additive for Li||LiNi0.85Co0.1Mn0.05O2 (NCM85) batteries, and comprehensively investigate its mechanism of action towards enhancing the stability of both anode and cathode interfaces. The preferential reduction and oxidation decomposition of DFOB- leads to the formation of a robust and highly electronically insulating boron-rich interfacial film on the surface of both the Li anode and NCM85 cathode. This film effectively suppresses the consumption of active lithium and the severe decomposition of the electrolyte. Furthermore, the presence of B elements in the cathode-electrolyte interfacial film, such as BF3, BF2OH, and BF2OBF2 compounds, can coordinate with the lattice oxygen of the cathode, forming strong coordination bonds. This can significantly alleviate lattice oxygen loss and mitigate detrimental structural degradation of the Ni-rich cathode. Consequently, the Li||NCM85 battery cycled in LiDFOB-containing electrolyte displays superior capacity retention of 74% after 300 cycles, even at a high charge cut-off voltage of 4.6 V. The comprehensive analysis of the working mechanisms of LiDFOB offers valuable insights for the rational design of electrolytes featuring multifunctional lithium salts or additives for high energy density lithium metal batteries.

Keywords

Lithium metal battery / lithium difluoro(oxalate) borate / Li anode / Ni-rich cathode / SEI/CEI film

Cite this article

Download citation ▾
Xuerui Yang, Yaxin Huang, Jianhui Li, Weilin Huang, Wen Yang, Changquan Wu, Shijun Tang, Fucheng Ren, Zhengliang Gong, Naigen Zhou, Yong Yang. Understanding of working mechanism of lithium difluoro(oxalato) borate in Li||NCM85 battery with enhanced cyclic stability. Energy Materials, 2023, 3(4): 300029 DOI:10.20517/energymater.2023.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li M,Chen Z,Lu J.New concepts in electrolytes.Chem Rev2020;120:6783-819

[2]

Blomgren GE.The development and future of lithium ion batteries.J Electrochem Soc2017;164:A5019

[3]

Kim T,Son D,Qi Y.Lithium-ion batteries: outlook on present, future, and hybridized technologies.J Mater Chem A2019;7:2942-64

[4]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:e1800561

[5]

Scrosati B,Sun Y.Lithium-ion batteries. A look into the future.Energy Environ Sci2011;4:3287-95

[6]

Xie J.A retrospective on lithium-ion batteries.Nat Commun2020;11:2499 PMCID:PMC7237495

[7]

Choi JU,Sun Y.Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion Batteries: yesterday, today, and tomorrow.Adv Energy Mater2020;10:2002027

[8]

Jiang F,Liu H.Mechanism understanding for stripping electrochemistry of Li metal anode.SusMat2021;1:506-36

[9]

Shi P,Shen X,Liu H.A review of composite lithium metal anode for practical applications.Adv Mater Technol2020;5:1900806

[10]

Liu H,Cheng X.Working principles of lithium metal anode in pouch cells.Adv Energy Mater2022;12:2202518

[11]

Yin S,Chen J.Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries.Nano Energy2021;83:105854

[12]

Yan P,Liu J.Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries.Nat Energy2018;3:600-5

[13]

Gao Y,Geng J,Chen M.Research progress on the failure mechanisms and modifications of Ni-rich ternary layered oxide cathode materials for lithium-ion batteries.J Electron Mater2023;52:72-95

[14]

de Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J, Ehrenberg H. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion Batteries.Adv Mater2019;31:e1900985

[15]

Geldasa FT,Shura MW.Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: a review.RSC Adv2022;12:5891-909 PMCID:PMC8982025

[16]

Li S,Zheng J.Direct observation of defect-aided structural evolution in a nickel-rich layered cathode.Angew Chem Int Ed2020;59:22092-9

[17]

Sun J,Zhou H.Advanced single-crystal layered Ni-rich cathode materials for next-generation high-energy-density and long-life Li-ion batteries.Phys Rev Mater2022;6:070201

[18]

Wang X,Du CF.Developments in surface/interface engineering of Ni-rich layered cathode materials.Chem Rec2022;22:e202200119

[19]

Niu C,Lochala JA.Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries.Nat Energy2021;6:723-32

[20]

Yoon M,Hwang J.Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries.Nat Energy2021;6:362-71

[21]

Ryu H,Yoon CS.Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?.Chem Mater2018;30:1155-63

[22]

Zhang C,Li Y.Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping.J Mater Chem A2020;8:6893-901

[23]

Zhu Z,Shi Z.Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh L−1.Energy Environ Sci2020;13:1865-78

[24]

Wang Y,Xue Z.An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances.Adv Energy Mater2020;10:2001413

[25]

Wang X,Li S.Lithium-aluminum-phosphate coating enables stable 4.6 V cycling performance of LiCoO2 at room temperature and beyond.Energy Stor Mater2021;37:67-76

[26]

Yang X,Yan P.Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering.Energy Stor Mater2022;12:2200197

[27]

Wang L,Wu T.Strain-retardant coherent perovskite phase stabilized Ni-rich cathode.Nature2022;611:61-7

[28]

Li J,Luo Z.Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: a review.Sustain Mater Technol2021;29:e00305

[29]

Liang L,Zhao F.Surface/interface structure degradation of Ni-Rich layered oxide cathodes toward lithium-ion batteries: fundamental mechanisms and remedying strategies.Adv Mater Interfaces2020;7:1901749

[30]

Zhang C,He W.Heteroepitaxial interface of layered cathode materials for lithium ion batteries.Energy Stor Mater2021;37:161-89

[31]

Zhang J,Ouyang C.Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V.Nat Energy2019;4:594-603

[32]

Zhu Z,Li Y.A surface Se-substituted LiCo[O2-δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells.Adv Mater2020;32:e2005182

[33]

Wang L,Wang C.A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability.Adv Sci2019;6:1900355 PMCID:PMC6662074

[34]

Jiang M,Eichel R.A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries.Adv Energy Mater2021;11:2103005

[35]

Liu J,Ni Y,Cheng F.Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries.Mater Today2021;43:132-65

[36]

Ni L,Di A.Challenges and strategies towards single-crystalline Ni-rich layered cathodes.Adv Energy Mater2022;12:2201510

[37]

Wang X,Deng Y.Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges.Adv Energy Mater2020;10:1903864

[38]

Chen H,Wan J.Tortuosity effects in lithium-metal host anodes.Joule2020;4:938-52

[39]

Liu W,Pei A.Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement.J Am Chem Soc2016;138:15443-50

[40]

Jie Y,Cao R,Jiao S.Advanced liquid electrolytes for rechargeable Li metal batteries.Adv Funct Mater2020;30:1910777

[41]

Liu B,Xu W.Advancing lithium metal batteries.Joule2018;2:833-45

[42]

Zhang JG,Xiao J,Liu J.Lithium metal anodes with nonaqueous electrolytes.Chem Rev2020;120:13312-48

[43]

Yang X,Liu G.Modification and regulation of electrode/electrolyte interface for high specific energy and long life lithium ion batteries.Chin Sci Bull2021;66:1170-86

[44]

Zhao W,Zhang Z.Recent advances in the research of functional electrolyte additives for lithium-ion batteries.Curr Opin Electrochem2017;6:84-91

[45]

Li L,Li M.B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries.J Energy Chem2022;71:588-94

[46]

Birrozzi A,Hekmatfar M,Giffin GA.Beneficial effect of propane sultone and tris(trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide.J Power Sources2016;325:525-33

[47]

Cha J,Hwang J,Choi N.Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries.J Power Sources2017;357:97-106

[48]

Cheng F,Wei P.Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries.Sci Bull2022;67:2225-34

[49]

Cui Y,Chai J.High performance solid polymer electrolytes for rechargeable batteries: a self-catalyzed strategy toward facile synthesis.Adv Sci2017;4:1700174 PMCID:PMC5700653

[50]

Ehteshami N,Stolz L,Paillard E.Ethylene carbonate-free electrolytes for Li-ion battery: study of the solid electrolyte interphases formed on graphite anodes.J Power Sources2020;451:227804

[51]

Han J,Cha A.Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries.Energy Environ Sci2018;11:1552-62

[52]

Hu M,Xing L.Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries.J Appl Electrochem2012;42:291-6

[53]

Jurng S,Kim J.Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes.Energy Environ Sci2018;11:2600-8

[54]

Liu S,Wang X,Li W.LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode.ACS Appl Mater Interfaces2020;12:33719-28

[55]

Xia L,Jiang Y,Chen GZ.Fluorinated electrolytes for Li-ion batteries: the lithium difluoro(oxalato)borate additive for stabilizing the solid electrolyte interphase.ACS Omega2017;2:8741-50 PMCID:PMC6645577

[56]

Ji Y,Zhong G.Synergistic effects of suberonitrile-LiBOB binary additives on the electrochemical performance of high-voltage LiCoO2 electrodes.J Electrochem Soc2015;162:A7015

[57]

Sun Y,Zou Y.2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a bifunctional electrolyte additive for Ni-rich (LiNi0.9Co0.05Mn0.05O2) cathode in Li-ion batteries.J Power Sources2023;556:232411

[58]

Zhang X,Zhou K.Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive-pentafluoropyridine.Energy Mater2022;1:100005

[59]

Zhao W,Lin M.Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes.J Power Sources2018;380:149-57

[60]

Zhao W,Liu H.Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance.Nano Energy2019;63:103815

[61]

Zhang B,Wang X.Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode.Energy Stor Mater2022;53:492-504

[62]

Chen J,Yin Y.High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte.Energy Environ Sci2022;15:3360-8

[63]

Mao M,Li Q,He Y.In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery.Nano Energy2020;78:105282

[64]

Wang C,Zhao Y.Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries.Small Methods2019;3:1900261

[65]

Zhou P,Hou WH.Rationally designed fluorinated amide additive enables the stable operation of lithium metal batteries by regulating the interfacial chemistry.Nano Lett2022;22:5936-43

[66]

Adams BD,Ren X,Zhang J.Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries.Adv Energy Mater2018;8:1702097

[67]

Hafner J.Ab-initio simulations of materials using VASP: density-functional theory and beyond.J Comput Chem2008;29:2044-78

[68]

Wu B,Mu D.Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte.RSC Adv2016;6:51738-46

[69]

Chen J,Yang X,Li T.Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive.Electrochim Acta2018;290:568-76

[70]

Cao Z,Qu Q,Zheng H.Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase.Adv Mater2021;33:e2103178

[71]

Li Q,Wang X.Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes.ACS Appl Mater Interfaces2020;12:2319-26

[72]

Fan X,Han F.Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery.Sci Adv2018;4:eaau9245 PMCID:PMC6303121

[73]

Parimalam BS.Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI.J Electrochem Soc2018;165:A251

[74]

Yang X,Zheng G.Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy.Adv Funct Mater2020;30:2004664

[75]

Yang X,Zheng C.From contaminated to highly lithiated interfaces: a versatile modification strategy for garnet solid electrolytes.Adv Funct Mater2023;33:2209120

[76]

Han Y,Kwak H.Single- or poly-crystalline Ni-Rich layered cathode, sulfide or halide solid electrolyte: which will be the winners for all-solid-state batteries?.Adv Energy Mater2021;11:2100126

[77]

Ryu H,Kim J,Yoon CS.Capacity fading mechanisms in Ni-Rich single-crystal NCM cathodes.ACS Energy Lett2021;6:2726-34

[78]

Yan P,Tang ZK.Injection of oxygen vacancies in the bulk lattice of layered cathodes.Nat Nanotechnol2019;14:602-8

[79]

Zheng W,Dai P.A functional electrolyte additive enabling robust interphases in high-voltage Li‖LiNi0.8Co0.1Mn0.1O2 batteries at elevated temperatures.J Mater Chem A2022;10:21912-22

[80]

Ma Y,Ma J.A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries.Energy Environ Sci2019;12:273-80

[81]

Dupin J,Vinatier P.Systematic XPS studies of metal oxides, hydroxides and peroxides.Phys Chem Chem Phys2000;2:1319-24

[82]

Pereira-nabais C,Chagnes A.Interphase chemistry of Si electrodes used as anodes in Li-ion batteries.Appl Surf Sci2013;266:5-16

[83]

Yang Y,Xue Z.Meticulous guard: the role of Al/F doping in improving the electrochemical performance of high-voltage spinel cathode.J Materiomics2021;7:585-92

PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

/