Iron phthalocyanine coupled with nickel-iron selenide layered hydroxide derivative as dual-functional oxygen electrocatalyst for rechargeable zinc-air batteries
Guang Li , Kuang Sheng , Yu Lei , Feng Zhang , Juan Yang , Baobao Chang , Liping Zheng , Xianyou Wang
Energy Materials ›› 2023, Vol. 3 ›› Issue (3) : 300021
Iron phthalocyanine coupled with nickel-iron selenide layered hydroxide derivative as dual-functional oxygen electrocatalyst for rechargeable zinc-air batteries
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for dual-functional non-precious metal electrocatalysts are promising alternatives for Pt/Ru-based materials in rechargeable zinc-air batteries (ZABs). However, how to achieve dual-functional oxygen electrocatalytic activity on single-component catalysts and identify the sites responsible for ORR and OER still face many challenges. Herein, an efficient and stable dual-functional electrocatalyst is fabricated by a two-step hydrothermal method with iron phthalocyanine (FePc) π-π stacking on nickel-iron selenide layered hydroxide derivatives (Se/Ni3Se4/Fe3O4). The as-prepared multi-component catalyst (named as FePc/Se@NiFe) exhibits better oxygen electrocatalytic properties than Pt/Ru-based catalysts, with a half-wave potential (E1/2) of 0.90 V and an overpotential of 10 mA cm-2 (Ej10) of 320 mV. More importantly, chronoamperometry (I-T) and accelerated durability tests (ADT) show the unordinary stability of the catalyst. Both physical characterization and experimental results verify that the Fe-N4 moieties and Ni3Se4 crystalline phase are the main active sites for ORR and OER activities, respectively. The small potential gap (ΔE = Ej10 - E1/2 = 0.622 V) represents superior dual-functional activities of the FePc/Se@NiFe catalyst. Subsequently, the ZABs assembled using FePc/Se@NiFe exhibit excellent performances. This study offers a promising design concept for promoting further development of high-performance ORR and OER electrocatalysts and their application in ZAB.
Multi-component / layered double hydroxide / iron (II) phthalocyanine / dual-functional electrocatalyst / rechargeable zinc-air battery
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
/
| 〈 |
|
〉 |