Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks

Yanfei Zhang , Qian Li , Guangxun Zhang , Tingting Lv , Pengbiao Geng , Yumeng Chen , Huan Pang

Energy Materials ›› 2023, Vol. 3 ›› Issue (3) : 300022

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (3) :300022 DOI: 10.20517/energymater.2023.06
Review

Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks

Author information +
History +
PDF

Abstract

Metal-organic frameworks (MOFs) have attracted increasing attention in electrochemistry due to their inherent characteristics, such as large specific surface area, high porosity, and structural flexibility. Defects can be designed and generated during the synthesis of MOFs, and their presence gives MOF materials excellent properties in terms of electrochemical energy conversion and storage. This review focuses on the types of defects in MOFs and presents recent and important advances in the methods for introducing defects into MOFs and the effects of defects on the physicochemical properties of MOFs, with emphasis on the application of defective MOFs as catalysts for electrochemical energy conversion and storage. On this basis, the current advantages and disadvantages of defective MOFs in electrochemical energy conversion and storage are presented and future research directions for defective MOFs construction in electrochemical applications are proposed.

Keywords

Metal-organic framework / defects / vacancy / catalyst / electrochemical

Cite this article

Download citation ▾
Yanfei Zhang, Qian Li, Guangxun Zhang, Tingting Lv, Pengbiao Geng, Yumeng Chen, Huan Pang. Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks. Energy Materials, 2023, 3(3): 300022 DOI:10.20517/energymater.2023.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S.Opportunities and challenges for a sustainable energy future.Nature2012;488:294-303

[2]

Elimelech M.The future of seawater desalination: energy, technology, and the environment.Science2011;333:712-7

[3]

Feng D,Lukatskaya MR.Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance.Nat Energy2018;3:30-6

[4]

Guo X,Li W.Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage.Adv Sci2023;10:e2206084 PMCID:PMC9896072

[5]

Wu Y,Gao J.Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis.SusMat2021;1:66-87

[6]

Xie J,Xu ZJ.Toward a high-performance all-plastic full battery with a’single organic polymer as both cathode and anode.Adv Energy Mater2018;8:1703509

[7]

Indra A,Paik U.Metal organic framework derived materials: progress and prospects for the energy conversion and storage.Adv Mater2018;30:e1705146

[8]

Liang HQ,Shi Y,Liang B.A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity.Angew Chem Int Ed2020;59:7732-7

[9]

Xu Y,Xue H.Metal-organic frameworks for direct electrochemical applications.Coord Chem Rev2018;376:292-318

[10]

Yang H.Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications.Adv Mater2019;31:e1800743

[11]

Zhang G,Zhang R,Zhu R.Recent advances in the development of electronically and ionically conductive metal-organic frameworks.Coord Chem Rev2021;439:213915

[12]

Bediako DK,Nocera DG.Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst.J Am Chem Soc2013;135:3662-74

[13]

Wei Y,Zhu W,Hu W.Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction.J Colloid Interface Sci2023;631:8-16

[14]

Hang X,Xue Y.The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance.Chin Chem Lett2023;34:107787

[15]

Hang X,Xue Y,Pang H.Synergistic effect of Co/Ni bimetallic metal-organic nanostructures for enhanced electrochemical energy storage.J Colloid Interface Sci2022;628:389-96

[16]

Wang HF,Pang H,Xu Q.MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.Chem Soc Rev2020;49:1414-48

[17]

Hou CC,Wang Y.MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries.Angew Chem Int Ed2020;59:21360-6

[18]

Liang HW,Brüller S,Müllen K.Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction.Nat Commun2014;5:4973

[19]

Wu H,Yan J,Jin W.MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts.Nanoscale2019;11:20144-50

[20]

Gong M,Tsai MC.Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis.Nat Commun2014;5:4695

[21]

Wu X,Sun F.The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors.Inorg Chem Front2022;10:78-84

[22]

Long X,Wang Z.Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media.J Am Chem Soc2015;137:11900-3

[23]

Zhong H,Ly KH.Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks.Nat Commun2020;11:1409 PMCID:PMC7075876

[24]

Nam DH,Lee G.Intermediate binding control using metal-organic frameworks enhances electrochemical CO2 reduction.J Am Chem Soc2020;142:21513-21

[25]

Bruce PG,Tarascon JM.Nanomaterials for rechargeable lithium batteries.Angew Chem Int Ed2008;47:2930-46

[26]

Cheng H,Li Y.Recent progress of advanced anode materials of lithium-ion batteries.J Energy Chem2021;57:451-68

[27]

Miao Y,Zhang Y,Li J.An overview of global power lithium-ion batteries and associated critical metal recycling.J Hazard Mater2022;425:127900

[28]

Sun S,Tao S.Formation of nitrogen-doped carbon-coated CoP nanoparticles embedded within graphene oxide for lithium-ion batteries anode.Energy Technol2020;8:1901089

[29]

Gao Y,Lu Y.Rational design and general synthesis of high-entropy metallic ammonium phosphate superstructures assembled by nanosheets.Inorg Chem2023;62:3669-78

[30]

Li B,Han C.A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries.J Colloid Interface Sci2021;599:467-75

[31]

Sun F,Li Q.Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous Nickel-Zinc battery.J Colloid Interface Sci2022;627:483-91

[32]

Wang S,Sun Y.Fan-like MnV2O6 superstructure for rechargeable aqueous zinc ion batteries.Chin Chem Lett2023;108143

[33]

Wu L.Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries.Energy Stor Mater2021;41:715-37

[34]

Elazari R,Garsuch A,Aurbach D.Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries.Adv Mater2011;23:5641-4

[35]

Fang D,Qian C.Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium-sulfur batteries.Adv Funct Mater2019;29:1900875

[36]

Li Y,Wang D.Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries.Adv Mater2020;32:e1906722

[37]

Liu G,Cui H,Liu Y.MOF derived in-situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable Lithium-sulfur batteries.Chem Eng J2020;381:122652

[38]

Luo D,Zhang Y.Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries.Adv Mater2022;34:e2105541

[39]

Yuan N,Yang J,Liu R.Multifunctional MOF-based separator materials for advanced lithium-sulfur batteries.Adv Mater Interfaces2021;8:2001941

[40]

Zhang H,Wu Y,Zou M.Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium-sulfur battery.J Mater Chem A2019;7:9195-201

[41]

Li N,Tang X,Pang H.Three-dimensional Co2V2O7·nH2O superstructures assembled by nanosheets for electrochemical energy storage.Chin Chem Lett2022;33:462-5

[42]

Li P,Zhang G,Meng X.Surface-halogen-introduced 2D NiCo bimetallic MOFs via a modulation method for elevated electrochemical glucose sensing.Inorg Chem Front2022;9:5853-61

[43]

Bi S,Chen M.Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes.Nat Mater2020;19:552-8

[44]

Hou S,Bai Y.Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor.Electrochim Acta2020;341:136053

[45]

Liu C,Li W,Zhang G.In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors.Angew Chem Int Ed2022;61:e202116282

[46]

Sun F,Bai Y.A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage.Chin Chem Lett2022;33:3249-54

[47]

Lin J,Zeng C,Zeb A.Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: a review.Coord Chem Rev2021;446:214118

[48]

Zhou W,Zhang X,Xue H.MOF derived metal oxide composites and their applications in energy storage.Coord Chem Rev2023;477:214949

[49]

He B,Pan Z.Freestanding metal-organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion.Chem Rev2022;122:10087-125 PMCID:PMC9185689

[50]

Li Q,Zhang G,Pang H.Recent advances in the development of perovskite@metal-organic frameworks composites.Nat Sci Open2023;2:20220065

[51]

Carrington EJ,Fletcher AJ,Warren M.Solvent-switchable continuous-breathing behaviour in a diamondoid metal-organic framework and its influence on CO2 versus CH4 selectivity.Nat Chem2017;9:882-9

[52]

Islamoglu T,Li Z,Farha OK.Postsynthetic tuning of metal-organic frameworks for targeted applications.ACC Chem Res2017;50:805-13

[53]

Zhou H,Yao S,Sun N.Synthesis of 3D printing materials and their electrochemical applications.Chin Chem Lett2022;33:3681-94

[54]

Hu Z,Li J.Luminescent metal-organic frameworks for chemical sensing and explosive detection.Chem Soc Rev2014;43:5815-40

[55]

Kim KJ,Culp JT.Metal-organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform.ACS Sens2018;3:386-94

[56]

Ma WP.Lanthanide functionalized MOF thin films as effective luminescent materials and chemical sensors for ammonia.Dalton Trans2020;49:15663-71

[57]

Zhu HL,Liao PQ.Rational design of metal-organic frameworks for electroreduction of CO2 to hydrocarbons and carbon oxygenates.ACS Cent Sci2022;8:1506-17 PMCID:PMC9686201

[58]

Narváez-celada D.CO2 electrochemical reduction on metal-organic framework catalysts: current status and future directions.J Mater Chem A2022;10:5899-917

[59]

Mohan B,Xi H.Fabricated metal-organic frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection.Biosens Bioelectron2022;197:113738

[60]

Zhang L,Cai X.Microcalorimetry-guided pore-microenvironment optimization to improve sensitivity of Ni-MOF electrochemical biosensor for chiral galantamine.Chem Eng J2021;426:130730

[61]

Cai G,Zhang L,Jiang HL.Metal-organic framework-based hierarchically porous materials: synthesis and applications.Chem Rev2021;121:12278-326

[62]

Chen J,Duan G,Zhao X.Structural design of carbon dots/porous materials composites and their applications.Chem Eng J2021;421:127743

[63]

Zhou H,Guo X,Li H.Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V2O5 nanowires compositing carbon nanomaterials.J Colloid Interface Sci2022;628:24-32

[64]

Gao Z,Liu J.Synthesis and characterization of a single-layer conjugated metal-organic structure featuring a non-trivial topological gap.Nanoscale2019;11:878-81

[65]

Mähringer A,Rotter JM.Oriented thin films of electroactive triphenylene catecholate-based two-dimensional metal-organic frameworks.ACS Nano2019;13:6711-9

[66]

Zheng S,Xue H,Pang H.Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage.J Colloid Interface Sci2022;614:130-7

[67]

Qutaish H,Hyeon Y.Design of cobalt catalysed carbon nanotubes in bimetallic zeolitic imidazolate frameworks.Appl Surf Sci2021;547:149134

[68]

Xie LS,Dincă M.Electrically conductive metal-organic frameworks.Chem Rev2020;120:8536-80 PMCID:PMC7453401

[69]

Pang Q,Li Q.Vacancies in metal-organic frameworks: formation, arrangement, and functions.Small Struct2022;3:2100203

[70]

Batten SR.Interpenetrating nets: ordered, periodic entanglement.Angew Chem Int Ed1998;37:1460-94

[71]

Ren J,Musyoka NM.Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests.Coord Chem Rev2017;349:169-97

[72]

Taddei M.When defects turn into virtues: the curious case of zirconium-based metal-organic frameworks.Coord Chem Rev2017;343:1-24

[73]

Liu L,Wang J.Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution.Nat Chem2019;11:622-8

[74]

Fang Z,De Vos DE.Defect-engineered metal-organic frameworks.Angew Chem Int Ed2015;54:7234-54 PMCID:PMC4510710

[75]

Xiang W,Chen Y,Tu X.Synthesis, characterization and application of defective metal-organic frameworks: current status and perspectives.J Mater Chem A2020;8:21526-46

[76]

Dissegna S,Heinz WR,Fischer RA.Defective metal-organic frameworks.Adv Mater2018;30:e1704501

[77]

Piao Y,Powell LR.Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects.Nat Chem2013;5:840-5

[78]

Tuller HL.Point defects in oxides: tailoring materials through defect engineering.Annu Rev Mater Res2011;41:369-98

[79]

Slater B,Jiang S,Ladewig BP.Missing linker defects in a homochiral metal-organic framework: tuning the chiral separation capacity.J Am Chem Soc2017;139:18322-7

[80]

Wu H,Krungleviciute V.Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.J Am Chem Soc2013;135:10525-32

[81]

Vos A, Hendrickx K, Van Der Voort P, Van Speybroeck V, Lejaeghere K. Missing linkers: an alternative pathway to UiO-66 electronic structure engineering.Chem Mater2017;29:3006-19 PMCID:PMC5390508

[82]

Yuan S,Qin JS.Construction of hierarchically porous metal-organic frameworks through linker labilization.Nat Commun2017;8:15356 PMCID:PMC5458506

[83]

Xue Z,Liu Q.Missing-linker metal-organic frameworks for oxygen evolution reaction.Nat Commun2019;10:5048 PMCID:PMC6834668

[84]

Liu QQ,Liu XF.Superprotonic conductivity of UiO-66 with missing-linker defects in aqua-ammonia vapor.Inorg Chem2022;61:3406-11

[85]

Basu O,Laha S.Defect engineering in a metal-organic framework system to achieve super-protonic conductivity.Chem Mater2022;34:6734-43

[86]

Rowsell JL.Metal-organic frameworks: a new class of porous materials.Microporous Mesoporous Mater2004;73:3-14

[87]

Idrees KB,Zhang X.Tailoring pore aperture and structural defects in zirconium-based metal-organic frameworks for krypton/xenon separation.Chem Mater2020;32:3776-82

[88]

Chammingkwan P,Mai LTT.Modulator-free approach towards missing-cluster defect formation in Zr-based UiO-66.RSC Adv2020;10:28180-5 PMCID:PMC9055678

[89]

Ma X,Zhang Q.Switching on the photocatalysis of metal-organic frameworks by engineering structural defects.Angew Chem Int Ed2019;131:12303-7

[90]

Fei H,Meng YS.Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework.J Am Chem Soc2014;136:4965-73

[91]

Nickerl G,Kaskel S.Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases.Chem Commun2015;51:2280-2

[92]

Pullen S,Orthaber A,Ott S.Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework.J Am Chem Soc2013;135:16997-7003 PMCID:PMC3829681

[93]

Cliffe MJ,Zou X.Correlated defect nanoregions in a metal-organic framework.Nat Commun2014;5:4176 PMCID:PMC4730551

[94]

Taddei M,Koutsianos A,Barron AR.Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: beware of the defects!.Angew Chem Int Ed2018;57:11706-10

[95]

Shearer GC,Bordiga S,Olsbye U.Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis.Chem Mater2016;28:3749-61

[96]

Gao W,Zhang X.Photocatalytic nitrogen fixation of metal-organic frameworks (MOFs) excited by ultraviolet light: insights into the nitrogen fixation mechanism of missing metal cluster or linker defects.Nanoscale2021;13:7801-9

[97]

Barin G,Gutov O,Yildirim T.Defect creation by linker fragmentation in metal-organic frameworks and its effects on gas uptake properties.Inorg Chem2014;53:6914-9

[98]

Pang Q,Yang L.Photochemical cycloaddition and temperature-dependent breathing in pillared-layer metal-organic frameworks.Sci Bull2019;64:1881-9

[99]

Zhang W,Guo P.Impact of synthesis parameters on the formation of defects in HKUST-1.Eur J Inorg Chem2017;2017:925-31

[100]

He S,Zhang Z,He W.Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures.Chem Sci2016;7:7101-5 PMCID:PMC5450591

[101]

Koo J,Yu X,Kim Y.Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching.Chem Sci2017;8:6799-803 PMCID:PMC5643979

[102]

Yang J,Li Y,Liu P.Zr-based MOFs shielded with phospholipid bilayers: improved biostability and cell uptake for biological applications.Chem Mater2017;29:4580-9

[103]

Wang Z,Yang J.Nanoscale Zr-based MOFs with tailorable size and introduced mesopore for protein delivery.Adv Funct Mater2018;28:1707356

[104]

Choi KM,Kang JK.Heterogeneity within order in crystals of a porous metal-organic framework.J Am Chem Soc2011;133:11920-3

[105]

Cai G.A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability.Angew Chem Int Ed2017;56:563-7

[106]

Dissegna S,Heinz WR,Fischer RA.Metal-organic frameworks: defective metal-organic frameworks.Adv Mater2018;30:1870280

[107]

Forgan RS.Modulated self-assembly of metal-organic frameworks.Chem Sci2020;11:4546-62 PMCID:PMC8159241

[108]

Liu B,Jo S,Ok YS.Recent advances in controlled modification of the size and morphology of metal-organic frameworks.Nano Res2018;11:4441-67

[109]

Winarta J,Mcintyre SM.A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework.Cryst Growth Des2020;20:1347-62

[110]

Shan B,Armstrong MR,Mu B.Investigation of missing-cluster defects in UiO-66 and ferrocene deposition into defect-induced cavities.Ind Eng Chem Res2018;57:14233-41

[111]

Iacomi P,Marreiros J.Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801).Chem Mater2019;31:8413-23

[112]

Ye G,Zhou W,Sun Y.Synthesis of defect-rich titanium terephthalate with the assistance of acetic acid for room-temperature oxidative desulfurization of fuel oil.ACS Catal2020;10:2384-94

[113]

Zhang H,Fan H.Defect creation by benzoic acid in Cu-based metal-organic frameworks for enhancing sulfur capture.Microporous Mesoporous Mater2020;298:110070

[114]

Wang J,Chen C.Engineering effective structural defects of metal-organic frameworks to enhance their catalytic performances.J Mater Chem A2020;8:4464-72

[115]

Lázaro I, Wells CJR, Forgan RS. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery.Angew Chem Int Ed2020;132:5249-55 PMCID:PMC7154787

[116]

Gutov OV,Escudero-Adán EC.Modulation by amino acids: toward superior control in the synthesis of zirconium metal-organic frameworks.Chemistry2016;22:13582-7

[117]

Assaad N,Hmadeh M.Defect control in Zr-based metal-organic framework nanoparticles for arsenic removal from water.ACS Appl Nano Mater2020;3:8997-9008

[118]

Jiang J,Zhang M.Higher symmetry multinuclear clusters of metal-organic frameworks for highly selective CO2 capture.J Am Chem Soc2018;140:17825-9

[119]

Muldoon PF,Miller CC.Programmable topology in new families of heterobimetallic metal-organic frameworks.J Am Chem Soc2018;140:6194-8

[120]

Kang X,Li L.Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis.Nat Commun2019;10:4466 PMCID:PMC6775123

[121]

Kim S,Yoon JW,Bae Y.Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake.Chem Eng J2018;335:94-100

[122]

Liu X,Wang Y,He Z.A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks.Nanoscale2017;9:17561-70

[123]

Xu R,Zhao P.Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal.J Mater Chem A2020;8:7870-9

[124]

Xu W,Ju Q,Huang W.Heterogeneous catalysts based on mesoporous metal-organic frameworks.Coord Chem Rev2018;373:199-232

[125]

Bunck DN.Mixed linker strategies for organic framework functionalization.Chemistry2013;19:818-27

[126]

Kozachuk O,Llabrés i Xamena FX.Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties.Angew Chem Int Ed2014;53:7058-62

[127]

Yuan S,Zou L.Thermodynamically guided synthesis of mixed-linker Zr-MOFs with enhanced tunability.J Am Chem Soc2016;138:6636-42

[128]

Bueken B,Krajnc A.Tackling the defect conundrum in UiO-66: a mixed-linker approach to engineering missing linker defects.Chem Mater2017;29:10478-86

[129]

Deng H,Furukawa H.Multiple functional groups of varying ratios in metal-organic frameworks.Science2010;327:846-50

[130]

Jrad A,Awada G,Ahmad M.Efficient biofuel production by MTV-UiO-66 based catalysts.Chem Eng J2021;410:128237

[131]

Chaemchuen S,Zhou K.Defect formation in metal-organic frameworks initiated by the crystal growth-rate and effect on catalytic performance.J Catal2017;354:84-91

[132]

Chu L,Wang L.Synthesis of defected UIO-66 with boosting the catalytic performance via rapid crystallization.Appl Organomet Chem2021;36:e6559

[133]

Feng X,Jena HS.Engineering a highly defective stable UiO-66 with tunable lewis- brønsted acidity: the role of the hemilabile linker.J Am Chem Soc2020;142:3174-83

[134]

Yang P,Li Y,Gu J.Hierarchical porous Zr-based MOFs synthesized by a facile monocarboxylic acid etching strategy.Chemistry2018;24:2962-70

[135]

Gadipelli S.Postsynthesis annealing of MOF-5 remarkably enhances the framework structural stability and CO2 uptake.Chem Mater2014;26:6333-8

[136]

Pan T,Wu P.Thermal shrinkage behavior of metal-organic frameworks.Adv Funct Mater2020;30:2001389

[137]

Shearier E,Bao J,Zhao F.Surface defection reduces cytotoxicity of Zn(2-methylimidazole)2 (ZIF-8) without compromising its drug delivery capacity.RSC Adv2016;6:4128-35 PMCID:PMC4792300

[138]

Steenhaut T,Barozzino-Consiglio G,Hermans S.Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation.RSC Adv2020;10:19822-31 PMCID:PMC9054116

[139]

Avci C,Carné-sánchez A.Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals.Angew Chem Int Ed2015;127:14625-9

[140]

Liang Y,Chen L.Microwave-assisted acid-induced formation of linker vacancies within Zr-based metal organic frameworks with enhanced heterogeneous catalysis.Chin Chem Lett2021;32:787-90

[141]

Doan HV,Eloi JC,Ting VP.Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy.Sci Rep2019;9:10887 PMCID:PMC6659662

[142]

Albolkany MK,Wang Y.Molecular surgery at microporous MOF for mesopore generation and renovation.Angew Chem Int Ed2021;60:14601-8

[143]

Chang GG,Zhang YX.Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion.Adv Mater2019;31:e1904969

[144]

Zhang B,Wu Z.Defect-rich 2D material networks for advanced oxygen evolution catalysts.ACS Energy Lett2019;4:328-36

[145]

Meng F,Ma L.Construction of hierarchically porous nanoparticles@metal-organic frameworks composites by inherent defects for the enhancement of catalytic efficiency.Adv Mater2018;30:e1803263

[146]

Jia M,Li Z.Air-thermal processing of hierarchically porous metal-organic frameworks.Nanoscale2020;12:14171-9

[147]

Bennett TD,Baxter EF.Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study.Phys Chem Chem Phys2016;18:2192-201

[148]

Cheng P.Acetylene adsorption on defected MIL-53.Int J Energy Res2016;40:846-52

[149]

Geng P,Du M.MIL-96-Al for Li-S batteries: shape or size?.Adv Mater2022;34:e2107836

[150]

Masoomi MY,Dhakshinamoorthy A.Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design.Angew Chem Int Ed2019;131:15330-47

[151]

Peng Y,Liu C,Kong Q.Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage.Coord Chem Rev2022;466:214602

[152]

Wang Y,Ma J.Confined interface transformation of metal-organic frameworks for highly efficient oxygen evolution reactions.Energy Environ Sci2022;15:3830-41

[153]

Svane KL,Gale JD.Vacancy defect configurations in the metal-organic framework UiO-66: energetics and electronic structure.J Mater Chem A2018;6:8507-13 PMCID:PMC6003546

[154]

Zhao X,Fan D.Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction.ACS Energy Lett2018;3:2520-6

[155]

Cao Y,Wu T,Zhang Y.Electrocatalysis of N2 to NH3 by HKUST-1 with High NH3 Yield.Chem Asian J2020;15:1272-6

[156]

Li J,Zhang X.Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors.J Mater Chem A2020;8:2463-71

[157]

Lázaro IA,Valiente P,García H.Tuning the photocatalytic activity of Ti-based metal-organic frameworks through modulator defect-engineered functionalization.ACS Appl Mater Interfaces2022;14:21007-17 PMCID:PMC9100481

[158]

Li S,Wulan B,Yan J.Complete dehydrogenation of N2H4BH3 over noble-metal-free Ni0.5Fe0.5-CeOx/MIL-101 with high activity and 100% H2 selectivity.Adv Energy Mater2018;8:1800625

[159]

Yang R,Lan B.Oxygen defect engineering of β-MnO2 catalysts via phase transformation for selective catalytic reduction of NO.Small2021;17:e2102408

[160]

Dhakshinamoorthy A,Garcia H.Catalysis and photocatalysis by metal organic frameworks.Chem Soc Rev2018;47:8134-72

[161]

Liu S,Liu H.A Ce-UiO-66 metal-organic framework-based graphene-embedded photocatalyst with controllable activation for solar ammonia fertilizer production.Angew Chem Int Ed2022;61:e202207026

[162]

Wang S,Cheng X,Sun W.Tailoring defect-type and ligand-vacancies in Zr(iv) frameworks for CO2 photoreduction.J Mater Chem A2022;10:16396-402

[163]

Li G,Palstra TT.Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection.Chem Soc Rev2017;46:1693-706

[164]

Jiang D,Chen M.Modified crystal structure and improved photocatalytic activity of MIL-53 via inorganic acid modulator.Appl Catal B Environ2019;255:117746

[165]

Hao YC,Li J.Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction.Nat Commun2021;12:2682 PMCID:PMC8113524

[166]

Seh ZW,Dickens CF,Nørskov JK.Combining theory and experiment in electrocatalysis: insights into materials design.Science2017;355:eaad4998

[167]

Zhao S,Dong J.Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution.Nat Energy2016;1:16184

[168]

Tahir M,Idrees F.Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review.Nano Energy2017;37:136-57

[169]

Zhang L,Gao G.Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions.Chem2018;4:285-97

[170]

Hod I,Bury W.A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution.Nat Commun2015;6:8304 PMCID:PMC4647847

[171]

Su X,Zhou J,Li J.Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction.J Am Chem Soc2018;140:11286-92

[172]

Xu H,Shan C.MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis.Angew Chem Int Ed2018;130:8790-4

[173]

Zou Z,Pan H.Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating.J Mater Chem A2020;8:14099-105

[174]

Zhao S,He C.Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction.Nat Energy2020;5:881-90

[175]

Kang T.Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement.Appl Surf Sci2021;560:150035

[176]

Chen X,Wei Y.High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template.Angew Chem Int Ed2019;58:17621-4

[177]

Han A,Wang X.One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis.Nat Commun2021;12:709 PMCID:PMC7846562

[178]

Sokolikova MS,Palczynski P,Mattevi C.Direct solution-phase synthesis of 1T’ WSe2 nanosheets.Nat Commun2019;10:712 PMCID:PMC6372596

[179]

Rui K,Lao M.Direct hybridization of noble metal nanostructures on 2D metal-organic framework nanosheets to catalyze hydrogen evolution.Nano Lett2019;19:8447-53

[180]

Wang D,Han C,Xing Z.Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics.Nat Commun2019;10:3899 PMCID:PMC6715676

[181]

Sun H,Lian Y.Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation.Adv Mater2020;32:e2006784

[182]

Gopi S,Ramu A,Kim H.Bifunctional electrocatalysts for water splitting from a bimetallic (V doped-NixFey) metal-organic framework MOF@Graphene oxide composite.Int J Hydrog Energy2022;47:42122-35

[183]

Fu J,Park MG,Fowler M.Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives.Adv Mater2017;29:1604685

[184]

Stamenkovic VR,Lopes PP.Energy and fuels from electrochemical interfaces.Nat Mater2016;16:57-69

[185]

Wang XX,Wu G.Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation.Nat Catal2019;2:578-89

[186]

Lin L,Gao R.Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts.Nature2017;544:80-3

[187]

Qiao B,Yang X.Single-atom catalysis of CO oxidation using Pt1/FeOx.Nat Chem2011;3:634-41

[188]

Yuan S,Hu L.Decarboxylation-induced defects in MOF-derived single cobalt Atom@Carbon electrocatalysts for efficient oxygen reduction.Angew Chem Int Ed2021;60:21685-90

[189]

Wu Q,Liu Q.Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis.Chem2022;8:2715-33

[190]

Chen X,Hu X,Jiang J.Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery.Nano Res2022;15:9000-9

[191]

Li J,Tang J.Metal-organic framework-derived graphene mesh: a robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media.J Am Chem Soc2022;144:9280-91

[192]

Ling LL,Liu X.Potassium-assisted fabrication of intrinsic defects in porous carbons for electrocatalytic CO2 reduction.Adv Mater2022;34:e2205933

[193]

Hu C,Chen J.Main-Group metal single-atomic regulators in dual-metal catalysts for enhanced electrochemical CO2 reduction.Small2022;18:e2201391

[194]

Kang X,Sheveleva A.Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode.Nat Commun2020;11:5464 PMCID:PMC7596083

[195]

Albo J,Beobide G.Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols.J CO2 Util2019;33:157-65

[196]

Albo J,Beobide G,Castaño P.Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols.ChemSusChem2017;10:1100-9

[197]

Ye G,Li X.Boosting catalytic performance of metal-organic framework by increasing the defects via a facile and green approach.ACS Appl Mater Interfaces2017;9:34937-43

[198]

Xu W,Wang J.Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass.Nat Commun2022;13:2068 PMCID:PMC9018706

[199]

Feng L,Wang K,Zhou H.Strategies for pore engineering in zirconium metal-organic frameworks.Chem2020;6:2902-23

[200]

Li J,Li J,Liu Y.Recent progress on microfine design of metal-organic frameworks: structure regulation and gas sorption and separation.Adv Mater2020;32:e2002563

[201]

Yilmaz G,Zhao D.Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications.Adv Sci2019;6:1901129 PMCID:PMC6839644

[202]

Feng Y,Zhang L.Defect engineering of enzyme-embedded metal-organic frameworks for smart cargo release.Chem Eng J2022;439:135736

[203]

Sun D,Wong HY.Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design.Angew Chem Int Ed2023;135:e202216008

[204]

Huang Y,Chen T.Tuning the wettability of metal-organic frameworks via defect engineering for efficient oil/water separation.ACS Appl Mater Interfaces2020;12:34413-22

[205]

Li Y,Chen Q,Chen M.Emerging of heterostructure materials in energy storage: a review.Adv Mater2021;33:e2100855

[206]

Liu J,Zhang T,Wen H.2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage.Angew Chem Int Ed2021;133:5672-84

[207]

Li Q,Sha J.NiMo6/ZIF-67 nanostructures on graphitic carbon nitride for colorimetric sensing of hydrogen peroxide and ascorbic acid.ACS Appl Nano Mater2021;4:12197-203

[208]

Li Q,Wang T,Sun J.Nanohybridization of CoS2/MoS2 heterostructure with polyoxometalate on functionalized reduced graphene oxide for high-performance LIBs.Chemistry2022;28:e202200207

[209]

Liu J,van Aken PA,Yu Y.Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries.Angew Chem Int Ed2015;127:9768-72

[210]

Maier J.Thermodynamics of electrochemical lithium storage.Angew Chem Int Ed2013;52:4998-5026

[211]

Cheng F,Tao Z.Functional materials for rechargeable batteries.Adv Mater2011;23:1695-715

[212]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[213]

Dou S,Wang R,Chen R.Plasma-assisted synthesis and surface modification of electrode materials for renewable energy.Adv Mater2018;30:e1705850

[214]

Sun S,Shen M.Plasma modulated MOF-derived TiO2/C for enhanced lithium storage.Chem Eng J2021;417:128003

[215]

Lin J,Lu M,Reddy RCK.Modulating electronic structure of metal-organic frameworks derived zinc manganates by oxygen vacancies for superior lithium storage.Chem Eng J2022;433:133770

[216]

Lv T,Dong S.Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries.Angew Chem Int Ed2023;62:e202216089

[217]

Nian Q,Feng Y.Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries.ACS Energy Lett2021;6:2174-80

[218]

Sun T,Nian Q.Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery.Chem Eng J2023;452:139324

[219]

Li P,Li C.MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery.Chem Eng J2023;451:138769

[220]

Leng W,Liu Y.MOF-derived MnV2O4/C microparticles with graphene coating anchored on graphite sheets: oxygen defect engaged high performance aqueous zinc-ion battery.Adv Mater Interfaces2022;9:2101705

[221]

Sun K,Zheng Y.Oxygen vacancies enriched MOF-derived MnO/C hybrids for high-performance aqueous zinc ion battery.J Alloys Compd2022;923:166470

[222]

Du M,Pei C.High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries.Angew Chem Int Ed2022;61:e202209350

[223]

Wang N,Ju Z.Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework.Nat Commun2021;12:4519 PMCID:PMC8313709

[224]

Yang Y,Cui Y.Nanostructured sulfur cathodes.Chem Soc Rev2013;42:3018-32

[225]

Manthiram A,Chung SH,Su YS.Rechargeable lithium-sulfur batteries.Chem Rev2014;114:11751-87

[226]

Wei Seh Z,Cha JJ.Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries.Nat Commun2013;4:1331

[227]

Liu M,Su J.Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries.ACS Appl Mater Interfaces2019;11:20788-95

[228]

Wang Y,Chen J.Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering.Adv Energy Mater2019;9:1900953

[229]

He Q,Wang H,Liao X.Oxygen defects boost polysulfides immobilization and catalytic conversion: first-principles computational characterization and experimental design.Nano Res2020;13:2299-307

[230]

Li S,Ding Y.Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium-sulfur batteries.ACS Nano2021;15:13803-13

[231]

Zhang X,Zhang Y.Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries.Nano Energy2021;86:106094

[232]

Wang X,Liu B.Creating edge sites within the 2D metal-organic framework boosts redox kinetics in lithium-sulfur batteries.Adv Energy Mater2022;12:2201960

[233]

Jiang Y,Liang R.D-orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery.Nat Commun2020;11:5858 PMCID:PMC7673988

[234]

Liu R,Shao X.Defect-engineered NiCo-S composite as a bifunctional electrode for high-performance supercapacitor and electrocatalysis.ACS Appl Mater Interfaces2021;13:47717-27

[235]

Wang H,Liu N,Fan T.Engineering mesopores and unsaturated coordination in metal-organic frameworks for enhanced oxygen reduction and oxygen evolution activity and Li-air battery capacity.ACS Sustain Chem Eng2021;9:4509-19

PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

/