Advanced 3D-structured electrode for potassium metal anodes

Dongqing Liu , Jun Shen , Zelang Jian , Xingke Cai

Energy Materials ›› 2023, Vol. 3 ›› Issue (4) : 300028

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (4) :300028 DOI: 10.20517/energymater.2023.05
Review

Advanced 3D-structured electrode for potassium metal anodes

Author information +
History +
PDF

Abstract

The potassium (K) metal anode, following the "Holy Grail" Li metal anode, is one of the most promising anode materials for next-generation batteries. In comparison with Li, K exhibits even more pronounced energy storage properties. However, it suffers from similar challenges as most alkali metal anodes, such as safety and cyclability issues. Borrowing strategies from Li/Na metal anodes, the three-dimensional (3D)-structured current collector has proven to be a universal and effective strategy. This study examines the recent research progress of 3D-structured electrodes for K metal anodes, focusing on the most commonly used host materials, including carbon-, metal-, and MXene-related electrode materials. Finally, existing challenges, various perspectives on the rational design of K metal anodes, and the future development of K batteries are presented.

Keywords

Potassium metal anode / 3D-structured electrode / metal batteries / current collectors

Cite this article

Download citation ▾
Dongqing Liu, Jun Shen, Zelang Jian, Xingke Cai. Advanced 3D-structured electrode for potassium metal anodes. Energy Materials, 2023, 3(4): 300028 DOI:10.20517/energymater.2023.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M.Building better batteries.Nature2008;451:652-7

[2]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[3]

Service RF.Lithium-ion battery development takes Nobel.Science2019;366:292

[4]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:1800561

[5]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[6]

Tao Y,Archer LA.Second life and recycling: energy and environmental sustainability perspectives for high-performance lithium-ion batteries.Sci Adv2021;7:eabi7633 PMCID:PMC8570603

[7]

Eshetu GG,Judez X.Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes.Nat Commun2021;12:5459 PMCID:PMC8443554

[8]

Kwak WJ,Sharon D.Lithium-oxygen batteries and related systems: potential, status, and future.Chem Rev2020;120:6626-83

[9]

Seh ZW,Zhang Q.Designing high-energy lithium-sulfur batteries.Chem Soc Rev2016;45:5605-34

[10]

Grey CP.Prospects for lithium-ion batteries and beyond-a 2030 vision.Nat Commun2020;11:6279 PMCID:PMC7722877

[11]

Nitta N,Lee JT.Li-ion battery materials: present and future.Mater Today2015;18:252-64

[12]

Teng W,Liang Q.Designing advanced liquid electrolytes for alkali metal batteries: principles, progress, and perspectives.Energy Environ Mater2023;6:e12355

[13]

Sun Y,Cui Y.Promises and challenges of nanomaterials for lithium-based rechargeable batteries.Nat Energy2016;1:16071

[14]

Rajagopalan R,Ji X,Wang H.Advancements and challenges in potassium ion batteries: a comprehensive review.Adv Funct Mater2020;30:1909486

[15]

Wu J,Liang Q.Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries.InfoMat2022;4:e12288

[16]

Zhao Y,Sun X.Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries.Energy Environ Sci2018;11:2673-95

[17]

Eftekhari A.Potassium secondary cell based on prussian blue cathode.J Power Sources2004;126:221-8

[18]

Zhang W,Guo Z.Approaching high-performance potassium-ion batteries via advanced design strategies and engineering.Sci Adv2019;5:eaav7412 PMCID:PMC6510555

[19]

Zhang Q,Zhang S,Mao J.Cathode materials for potassium-ion batteries: current status and perspective.Electrochem Energy Rev2018;1:625-58

[20]

Zhu Y,Sun T.Recent progresses and prospects of cathode materials for non-aqueous potassium-ion batteries.Electrochem Energy Rev2018;1:548-66

[21]

Zhong F,Li G.Beyond-carbon materials for potassium ion energy-storage devices.Renew Sustain Energy Rev2021;146:111161

[22]

Tian Y,Zhang S.Polymer "tape" -assisted ball-milling method fabrication few-atomic-layered bismuth for improving K+ /Na+ storage.Energy Environ Mater2021;4:421-7

[23]

Guo Y,Zhai T.Reviving lithium-metal anodes for next-generation high-energy batteries.Adv Mater2017;29:1700007

[24]

Lin D,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat Nanotechnol2017;12:194-206

[25]

Popovic J.Review-recent advances in understanding potassium metal anodes.J Electrochem Soc2022;169:030510

[26]

Dhir S,Capone I.Outlook on K-ion batteries.Chem2020;6:2442-60

[27]

Xiang J,Yuan L.Alkali-metal anodes: from lab to market.Joule2019;3:2334-63

[28]

Hu L,Liang Q.Engineering current collectors for advanced alkali metal anodes: a review and perspective.EcoMat2023;5:e12269

[29]

Liu H,Jin Z.Recent advances in understanding dendrite growth on alkali metal anodes.Energy Chem2019;1:100003

[30]

Zhong Y,He Q.Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes.Energy Stor Mater2022;45:48-73

[31]

Yasin G,Mehtab T.Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries.Energy Stor Mater2020;25:644-78

[32]

Wang H,Kuang C.Alkali metal anodes for rechargeable batteries.Chem2019;5:313-38

[33]

Liu B,Xu W.Advancing lithium metal batteries.Joule2018;2:833-45

[34]

Zhang JG,Xiao J,Liu J.Lithium metal anodes with nonaqueous electrolytes.Chem Rev2020;120:13312-48

[35]

Fan L,Zhang Q,Lu B.Graphite anode for a potassium-ion battery with unprecedented performance.Angew Chem Int Ed2019;58:10500-5

[36]

Liu S,Zhang L,Du A.Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries.Adv Mater2021;33:2006313

[37]

Mao J,Lyu Y.Organic electrolyte design for practical potassium-ion batteries.J Mater Chem A2022;10:19090-106

[38]

Liang HJ,Zhao XX.Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode.Sci Bull2022;67:1581-8

[39]

Li NW,Yang CP.An artificial solid electrolyte interphase layer for stable lithium metal anodes.Adv Mater2016;28:1853-8

[40]

Bao C,Liu P.Solid electrolyte interphases on sodium metal anodes.Adv Funct Mater2020;30:2004891

[41]

Luo Z,Liu C.Interfacial challenges towards stable Li metal anode.Nano Energy2021;79:105507

[42]

Zhao Y,Wu F,Li L.Anode interface engineering and architecture design for high-performance lithium-sulfur batteries.Adv Mater2019;31:1806532

[43]

Liu W,Mitlin D.Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes.Adv Energy Mater2020;10:2002297

[44]

Park S,Yun YS.Advances in the design of 3D-structured electrode materials for lithium-metal anodes.Adv Mater2020;32:2002193

[45]

Luo G,Zhao J.Negatively charged holey titania nanosheets added electrolyte to realize dendrite-free lithium metal battery.Small2023;19:2206176

[46]

Luo G,Liu D,Liu F.Electrosynthesis of vertically aligned zinc oxide nanoflakes on 3D porous Cu foam enables dendrite-free Li-metal anode.ACS Appl Mater Interfaces2022;14:33400-9

[47]

Liu D,Tong T,Shen J.Mesoporous copper-based metal glass as current collector for Li metal anode.Chem Eng J2023;451:138910

[48]

Zheng ZJ,Guo ZP.Recent progress in designing stable composite lithium anodes with improved wettability.Adv Sci2020;7:2002212 PMCID:PMC7675197

[49]

Wu J,Fan W,Mai Y.Rationally designed alloy phases for highly reversible alkali metal batteries.Energy Stor Mater2022;48:223-43

[50]

Wu F,Cheng X.Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes.Energy Stor Mater2018;15:148-70

[51]

Hussain A,Saleem A.Polyetherimide membrane with tunable porous morphology for safe lithium metal-based batteries.Chem Eng J2023;453:139804

[52]

Raza W,Mehmood A.Poly(ether imide) porous membrane developed by a scalable method for high-performance lithium-sulfur batteries: combined theoretical and experimental study.ACS Appl Mater Interfaces2022;14:52794-805

[53]

Wei C,An Y.Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes.Adv Funct Mater2020;30:2004613

[54]

Chen J,Li S.Porous metal current collectors for alkali metal batteries.Adv Sci2022;10:2205695 PMCID:PMC9811491

[55]

Wei C,Fei H.Recent advances and perspectives in stable and dendrite-free potassium metal anodes.Energy Stor Mater2020;30:206-27

[56]

Liu P.Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces.ACC Chem Res2020;53:1161-75

[57]

Shi P,Shen X,Liu H.A review of composite lithium metal anode for practical applications.Adv Mater Technol2020;5:1900806

[58]

Yang G,Tong Y.Lithium plating and stripping on carbon nanotube sponge.Nano Lett2019;19:494-9

[59]

Zuo TT,Yang CP.Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes.Adv Mater2017;29:1700389

[60]

Pan L,Zhang Y.Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode.ACS Appl Mater Interfaces2019;11:44383-9

[61]

Niu C,Xu W.Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions.Nat Nanotechnol2019;14:594-601

[62]

Cui J,Ihsan-ul-haq M,Kim J.Correlation between Li Plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes.Adv Energy Mater2019;9:1802777

[63]

Chen X,Hou TZ.Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes.Sci Adv2019;5:eaau7728 PMCID:PMC6377277

[64]

Zhang C,Li G,Liu X.Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes.Adv Mater2018;30:1801328

[65]

Li S,Zhou J.Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries.Adv Funct Mater2019;29:1808847

[66]

Li Y,Liu S.Original growth mechanism for ultra-stable dendrite-free potassium metal electrode.Nano Energy2019;62:367-75

[67]

Qin L,Wang H.Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes.Adv Energy Mater2019;9:1901427

[68]

Ye M,Sun YK.A 4 V class potassium metal battery with extremely low overpotential.ACS Nano2019;13:9306-14

[69]

Meng J,Xiao Z.Amine-wetting-enabled dendrite-free potassium metal anode.ACS Nano2022;16:7291-300

[70]

Zhang D,Wu L.Coupling low-tortuosity carbon matrix with single-atom chemistry enables dendrite-free potassium-metal anode.Adv Energy Mater2023;13:2203277

[71]

Yang Y,Zhang Y.Processable potassium-carbon nanotube film with a three-dimensional structure for ultrastable metallic potassium anodes.ACS Appl Mater Interfaces2022;14:55577-86

[72]

Cheng G,Wang X.CoZn nanoparticles@hollow carbon tubes enabled high-performance potassium metal batteries.ACS Appl Mater Interfaces2022;14:45364-72

[73]

Zhang J,Zhu L,Tu J.Potassiophilic skeleton achieving highly stable potassium metal anode.Chem Eng J2022;449:137659

[74]

Wang L,Cheng M.Metal-organic framework@polyacrylonitrile-derived potassiophilic nanoporous carbon nanofiber paper enables stable potassium metal anodes.ACS Appl Energy Mater2021;4:6245-52

[75]

Xie Y,Han Z.Ultra-stable K metal anode enabled by oxygen-rich carbon cloth.Nano Res2020;13:3137-41

[76]

Zhou M,Hu Z.Highly potassiophilic carbon nanofiber paper derived from bacterial cellulose enables ultra-stable dendrite-free potassium metal anodes.ACS Appl Mater Interfaces2021;13:17629-38

[77]

Qiao F,Wang J.Building carbon cloth-based dendrite-free potassium metal anodes for potassium metal pouch cells.J Mater Chem A2021;9:23046-54

[78]

Zhao X,Liu J.Enhanced surface binding energy regulates uniform potassium deposition for stable potassium metal anodes.J Mater Chem A2020;8:5671-8

[79]

Liu S,Qian Y.MOF-derived potassiophilic CuO nanoparticles on carbon fiber cloth as host for stabilizing potassium metal anode.ChemElectroChem2022;9:e202101561

[80]

Han M,Lu S.Moderate specific surface areas help three-dimensional frameworks achieve dendrite-free potassium-metal anodes.ACS Appl Mater Interfaces2022;14:900-9

[81]

Yang CP,Zhang SF,Guo YG.Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nat Commun2015;6:8058 PMCID:PMC4560781

[82]

Yun Q,Lv W.Chemical dealloying derived 3D porous current collector for Li metal anodes.Adv Mater2016;28:6932-9

[83]

Li Q,Lu Y.3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries.Adv Funct Mater2017;27:1606422

[84]

Wang X,Hong L.Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates.Nat Energy2018;3:227-35

[85]

Lee J,Kim DM.Three-dimensional porous frameworks for Li metal batteries: superconformal versus conformal Li growth.ACS Appl Mater Interfaces2021;13:33056-65

[86]

Chen J,Qiao X.Integrated porous Cu host induced high-stable bidirectional Li plating/stripping behavior for practical Li metal batteries.Small2022;18:2105999

[87]

Wang T,Lu Y,Fan L.Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts.Energy Stor Mater2018;15:274-81

[88]

Chu C,Cai F.Recent advanced skeletons in sodium metal anodes.Energy Environ Sci2021;14:4318-40

[89]

Yang W,Dong L,Wang G.Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes.Nano Energy2021;80:105563

[90]

Wang C,Matios E,Li W.A chemically engineered porous copper matrix with cylindrical core-shell skeleton as a stable host for metallic sodium anodes.Adv Funct Mater2018;28:1802282

[91]

Chen Q,Zhang L.Sodiophilic Zn/SnO2 porous scaffold to stabilize sodium deposition for sodium metal batteries.Chem Eng J2021;404:126469

[92]

Liu P,Gu Q,Watt J.Dendrite-free potassium metal anodes in a carbonate electrolyte.Adv Mater2020;32:1906735

[93]

Wang J,Chen C.Cu3Pt alloy-functionalized Cu mesh as current collector for dendritic-free anodes of potassium metal batteries.Nano Energy2020;75:104914

[94]

Wang J,Zhang J.High area capacity and dendrite-free anode constructed by highly potassiophilic Pd/Cu current collector for low-temperature potassium metal battery.Nano Energy2022;96:107131

[95]

Li H,Wang J,Zhang J.Robust 3D copper foam functionalized with gold nanoparticles as anode for high-performance potassium metal batteries.Chem Asian J2022;17:e202200430

[96]

Liu F,Ling F.Homogeneous metallic deposition regulated by porous framework and selenization interphase toward stable sodium/potassium anodes.Adv Funct Mater2022;32:2210166

[97]

Liu P,Hao H.Stable potassium metal anodes with an all-aluminum current collector through improved electrolyte wetting.Adv Mater2020;32:2002908

[98]

Yi Y,Gao Z.Highly potassiophilic graphdiyne skeletons decorated with Cu quantum dots enable dendrite-free potassium-metal anodes.Adv Mater2022;34:2202685

[99]

Ye S,Liu F,Yu Y.Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode.eScience2021;1:75-82

[100]

Shi H,Zheng S,Wu ZS.Three dimensional Ti3C2 MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes.Nanoscale Adv2020;2:4212-9 PMCID:PMC9417470

[101]

Shi H,Zhang CJ.3D Flexible, Conductive, and Recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode.ACS Nano2020;14:8678-88

[102]

Tang X,Li P.MXene-based dendrite-free potassium metal batteries.Adv Mater2020;32:1906739

[103]

Fang Y,Zhu K.Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes.ACS Nano2019;13:14319-28

[104]

Pang J,Bachmatiuk A.Applications of 2D MXenes in energy conversion and storage systems.Chem Soc Rev2019;48:72-133

PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

/