Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries

Lucia Mazzapioda , Akiko Tsurumaki , Graziano Di Donato , Henry Adenusi , Maria Assunta Navarra , Stefano Passerini

Energy Materials ›› 2023, Vol. 3 ›› Issue (2) : 300019

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (2) :300019 DOI: 10.20517/energymater.2023.03
Review

Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries

Author information +
History +
PDF

Abstract

Solid-state batteries (SSBs) based on inorganic solid electrolytes (ISEs) are considered promising candidates for enhancing the energy density and the safety of next-generation rechargeable lithium batteries. However, their practical application is frequently hampered by the high resistance arising at the Li metal anode/ISE interface. Herein, a review of the conventional solid-state electrolytes (SSEs) the recent research on quasi-solid-state battery (QSSB) approaches to overcome the issues of the state-of-the-art SSBs is reported. The feasibility of ionic liquid (IL)-based interlayers to improve ISE/Li metal wetting and enhance charge transfer at solid electrolyte interfaces with both positive and lithium metal electrodes is presented together with a novel generation of IL-containing quasi-solid-state-electrolytes (QSSEs), offering favourable features. The opportunities and challenges of QSSE for the development of high energy and high safety quasi-solid-state lithium metal batteries (QSSLMBs) are also discussed.

Keywords

All solid-state batteries / lithium metal anode / inorganic solid-state electrolytes / interfacial issues / quasi-solid-state batteries

Cite this article

Download citation ▾
Lucia Mazzapioda, Akiko Tsurumaki, Graziano Di Donato, Henry Adenusi, Maria Assunta Navarra, Stefano Passerini. Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries. Energy Materials, 2023, 3(2): 300019 DOI:10.20517/energymater.2023.03

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scrosati B.Lithium batteries: status, prospects and future.J Power Sources2010;195:2419-30

[2]

Armand M.Building better batteries.Nature2008;451:652-7

[3]

Passerini S.Lithium and lithium-ion batteries: challenges and prospects.Electrochem Soc Interface2016;25:85-7

[4]

Kalhoff J,Bresser D.Safer electrolytes for lithium-ion batteries: state of the art and perspectives.ChemSusChem2015;8:2154-75

[5]

Chen Y,Zhao Y.A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards.J Energy Chem2021;59:83-99

[6]

Xu W,Ding F.Lithium metal anodes for rechargeable batteries.Energy Environ Sci2014;7:513-37

[7]

Wang H,Kuang C.Alkali metal anodes for rechargeable batteries.Chem2019;5:313-38

[8]

Adenusi H,Passerini S,Chen G.Lithium batteries and the solid electrolyte interphase (SEI) - progress and outlook.Adv Energy Mater2023;13:2203307

[9]

Jha V.Modeling the SEI layer formation and its growth in lithium-ion batteries (LiB) during charge-discharge cycling.Ionics2022;28:3661-70

[10]

Lewis JA,Cortes FJQ.Chemo-mechanical challenges in solid-state batteries.Trends Chem2019;1:845-57

[11]

Donato G, Ates T, Adenusi H, Varzi A, Navarra MA, Passerini S. Electrolyte measures to prevent polysulfide shuttle in lithium-sulfur batteries.Batteries Supercaps2022;5:e202200097-121

[12]

Fergus JW.Ceramic and polymeric solid electrolytes for lithium-ion batteries.J Power Sources2010;195:4554-69

[13]

Sashmitha K.A comprehensive review of polymer electrolyte for lithium-ion battery.Polym Bull2023;80:89-135

[14]

Mindemark J,Bowden T.Beyond PEO - alternative host materials for Li+-conducting solid polymer electrolytes.Prog Polym Sci2018;81:114-43

[15]

Alexander GV,Sobhan Raj SV,Ud Din MM.Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors.J Power Sources2018;396:764-73

[16]

Chen R,Lu J.The thermal stability of lithium solid electrolytes with metallic lithium.Joule2020;4:812-21

[17]

Schwietert TK,Wagemaker M.First-principles prediction of the electrochemical stability and reaction mechanisms of solid-state electrolytes.JACS Au2021;1:1488-96 PMCID:PMC8479866

[18]

Manthiram A,Wang S.Lithium battery chemistries enabled by solid-state electrolytes.Nat Rev Mater2017;2:16103

[19]

Wei R,Gao T.Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries.Nano Select2021;2:2256-74

[20]

Zhao Q,Zhao C.Designing solid-state electrolytes for safe, energy-dense batteries.Nat Rev Mater2020;5:229-52

[21]

Gurung A,Baniya A.A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries.Sustain Energy Fuels2019;3:3279-309

[22]

Fan L,Li S,Lu Y.Recent progress of the solid-state electrolytes for high-energy metal-based batteries.Adv Energy Mater2018;8:1702657

[23]

Lu J.Perovskite-type Li-ion solid electrolytes: a review.J Mater Sci Mater Electron2021;32:9736-54

[24]

Ramakumar S,Dhivya L,Murugan R.Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications.Prog Mater Sci2017;88:325-411

[25]

Wang P,Song W,Chen R.Electro-Chemo-Mechanical issues at the interfaces in solid-state lithium metal batteries.Adv Funct Mater2019;29:1900950-79

[26]

Lim H,Shin H.A review of challenges and issues concerning interfaces for all-solid-state batteries.Energy Stor Mater2020;25:224-50

[27]

Tsurumaki A.Dissolution of oligo(tetrafluoroethylene) and preparation of poly(tetrafluoroethylene)-based composites by using fluorinated ionic liquids.Chem Commun2018;54:409-12

[28]

Kalhoff J,Passerini S.Safety assessment of ionic liquid-based lithium-ion battery prototypes.J Energy Power Eng2016;04:9-18

[29]

Shin J.Ionic liquids to the rescue? overcoming the ionic conductivity limitations of polymer electrolytes.Electrochem Commun2003;5:1016-20

[30]

Tian L,Liu Y.Multiple ionic conduction highways and good interfacial stability of ionic liquid-encapsulated cross-linked polymer electrolytes for lithium metal batteries.J Power Sources2022;543:231848

[31]

Eshetu G, Armand M, Scrosati B, Passerini S. Energy storage materials synthesized from ionic liquids.Angew Chem Int Ed2014;53:13342-59

[32]

Osada I,Scrosati B.Ionic-liquid-based polymer electrolytes for battery applications.Angew Chem Int Ed2016;55:500-13

[33]

Ito S,Ogawa H,Honma I.Application of quasi-solid-state silica nanoparticles-ionic liquid composite electrolytes to all-solid-state lithium secondary battery.J Power Sources2012;208:271-5

[34]

Wen Z,Zhao Z.A leaf-like Al2O3-based quasi-solid electrolyte with a fast Li+ conductive interface for stable lithium metal anodes.J Mater Chem A2020;8:7280-7

[35]

Liu S,Ba D.Filler-integrated composite polymer electrolyte for solid-state lithium batteries.Adv Mater2023;35:e2110423

[36]

Huy VP, So S, Hur J. Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries.Nanomaterials2021;11:614 PMCID:PMC8001111

[37]

Chen R,Yu X,Li H.Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces.Chem Rev2020;120:6820-77

[38]

Haven Y.The ionic conductivity of Li-halide crystals.Recl Trav Chim Pays-Bas1950;69:1471-89

[39]

Alpen U.Li3N: a promising Li ionic conductor.J Solid State Chem1979;29:379-92

[40]

Lapp T.Ionic conductivity of pure and doped Li3N.Solid State Ion1983;11:97-103

[41]

Wang C,Kammampata SP.Garnet-type solid-state electrolytes: materials, interfaces, and batteries.Chem Rev2020;120:4257-300

[42]

Goodenough J,Kafalas J.Fast Na+-ion transport in skeleton structures.Mater Res Bull1976;11:203-20

[43]

Wells AF. Structural inorganic chemistry, 4th ed. Oxford: Clarendon Press; 1975.

[44]

Thangadurai V.Li6ALa2Ta2O12 (A = Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure.J Am Ceram Soc2005;88:411-8

[45]

Thangadurai V.Li6ALa2Ta2O12 (A = Sr, Ba): novel Garnet-like oxides for fast lithium ion conduction.Adv Funct Mater2005;15:107-12.

[46]

Thangadurai V,Pinzaru D.Garnet-type solid-state fast Li ion conductors for Li batteries: critical review.Chem Soc Rev2014;43:4714-27

[47]

Murugan R,Weppner W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12.Angew Chem Int Ed2007;46:7778-81

[48]

Wang W,Gao Y.Lithium-ionic diffusion and electrical conduction in the Li7La3Ta2O13 compounds.Solid State Ion2009;180:1252-6

[49]

Mariappan CR,Jayaraman V.Lithium ion conduction in Li5La3Ta2O12 and Li7La3Ta2O13 garnet-type materials.J Electroceram2013;30:258-65

[50]

Cussen EJ.The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors.Chem Commun2006;:412-3

[51]

Wu JF,Peterson VK,Guo X.Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries.ACS Appl Mater Interfaces2017;9:12461-8

[52]

Xia W,Duan H.Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles.ACS Appl Mater Interfaces2016;8:5335-42

[53]

Sharafi A,Naguib M.Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance.J Mater Chem A2017;5:13475-87

[54]

Sun Y,Liu Y,Li S.Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery.Crit Rev Solid State2019;44:265-82

[55]

Stramare S,Weppner W.Lithium lanthanum titanates:  a review.Chem Mater2003;15:3974-90

[56]

Inaguma Y,Itoh M.High ionic conductivity in lithium lanthanum titanate.Solid State Commun1993;86:689-93

[57]

Yan S,Pankov V.Perovskite solid-state electrolytes for lithium metal batteries.Batteries2021;7:75

[58]

Chen C.Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate.Solid State Ion2001;144:51-7

[59]

Hong H.Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Mater Res Bull1978;13:117-24

[60]

West AR.Crystal chemistry of some tetrahedral oxides.Z Kristallogr1975;141:422-36

[61]

Shannon R,English A.New Li solid electrolytes.Electrochim Acta1977;22:783-96

[62]

Hu Y,Huggins RA.Ionic conductivity of lithium orthosilicate - lithium phosphate solid solutions.J Electrochem Soc1977;124:1240-2

[63]

Lau J,Butts DM,Choi CS.Sulfide solid electrolytes for lithium battery applications.Adv Energy Mater2018;8:1800933

[64]

Yu X,Jellison GE.A stable thin-film lithium electrolyte: lithium phosphorus oxynitride.J Electrochem Soc1997;144:524-32

[65]

Oudenhoven JFM,Notten PHL.All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts.Adv Energy Mater2011;1:10-33

[66]

Nowak S,Schmitz G.Ultra-thin LiPON films - fundamental properties and application in solid state thin film model batteries.J Power Sources2015;275:144-50

[67]

Bates J,Gruzalski G.Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries.J Power Sources1993;43:103-10

[68]

Cheng D,Wang X.Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy.Joule2020;4:2484-500

[69]

López-aranguren P,Głuchowski P.Crystalline LiPON as a bulk-type solid electrolyte.ACS Energy Lett2021;6:445-50

[70]

Zhang X,Laine RM.Design, synthesis, and characterization of polymer precursors to LixPON and LixSiPON Glasses: materials that enable all-solid-state batteries.Macromolecules2020;53:2702-12

[71]

Lee S,Lee H,Lee S.Electrical conductivity in Li-Si-P-O-N oxynitride thin-films.J Power Sources2003;123:61-4

[72]

Su Y,Leichtweiß T.Electrochemical properties and optical transmission of high Li+ conducting LiSiPON electrolyte films: electrochemical properties of high Li+ conducting LiSiPON electrolyte films.Phys Status Solidi B2017;254:1600088

[73]

Wang W,Hu L.Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries.J Mater Chem A2014;2:1341-5

[74]

Zhao D,Hu J.Structure determination, electronic and optical properties of NaGe2P3O12 and Cs2GeP4O13.J Molecular Struct2009;922:127-34

[75]

Ortiz-mosquera JF,Rodrigues AC.Precursor glass stability, microstructure and ionic conductivity of glass-ceramics from the Na1+xAlxGe2-x(PO4)3 NASICON series.J Non-Cryst Solids2019;513:36-43

[76]

Wu M,Hu J.NASICON-structured NaTi2(PO4)3 for sustainable energy storage.Nano-Micro Lett2019;11:44 PMCID:PMC7770786

[77]

Bachman JC,Grimaud A.Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.Chem Rev2016;116:140-62

[78]

Tan G,Li L,Chen R.Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries.J Phys Chem C2012;116:3817-26

[79]

Illbeigi M,Kazazi M.Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass-ceramics.Solid State Ion2016;289:180-7

[80]

Kamaya N,Yamakawa Y.A lithium superionic conductor.Nat Mater2011;10:682-6

[81]

Mo Y,Ceder G.First principles study of the Li10GeP2S12 lithium super ionic conductor material.Chem Mater2012;24:15-7

[82]

Adams S.Structural requirements for fast lithium ion migration in Li10GeP2S12.J Mater Chem2012;22:7687

[83]

Hu C,Sun Z.Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations.Chem Phys Lett2014;591:16-20

[84]

Chen S,Liu G.Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application.Energy Stor Mater2018;14:58-74

[85]

Dietrich C,Sedlmaier SJ.Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7.J Mater Chem A2017;5:18111-9

[86]

Wang G,Gao C.Hydrolysis-resistant and anti-dendritic halide composite Li3PS4-LiI solid electrolyte for all-solid-state lithium batteries.Electrochim Acta2022;428:140906

[87]

Calpa M,Miura A,Tateyama Y.Chemical stability of Li4PS4I solid electrolyte against hydrolysis.Appl Mater Today2021;22:100918

[88]

Rao RP.Studies of lithium argyrodite solid electrolytes for all-solid-state batteries: studies of lithium argyrodite solid electrolytes.Phys Status Solidi A2011;208:1804-7

[89]

Boulineau S,Tarascon J.Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application.Solid State Ion2012;221:1-5

[90]

Deiseroth H,Weichert K,Kong S.Li7PS6 and Li6PS5X (X: Cl, Br, I): possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements.Z Anorg Allg Chem2011;637:1287-94

[91]

Deiseroth HJ,Eckert H.Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility.Angew Chem Int Ed2008;47:755-8

[92]

Zhu Y,Mo Y.First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries.J Mater Chem A2016;4:3253-66

[93]

Wang S,Ma T,Li H.Thermal stability between sulfide solid electrolytes and oxide cathode.ACS Nano2022;16:16158-76

[94]

Paul PP,Langevin SA,Nelson Weker J.Interfaces in all solid state Li-metal batteries: a review on instabilities, stabilization strategies, and scalability.Energy Stor Mater2022;45:969-1001

[95]

Pervez SA,Thangadurai V.Interface in solid-state lithium battery: challenges, progress, and outlook.ACS Appl Mater Interfaces2019;11:22029-50

[96]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[97]

Banerjee A,Fang C,Meng YS.Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes.Chem Rev2020;120:6878-933

[98]

Wenzel S,Krüger D,Janek J.Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy.Solid State Ion2015;278:98-105

[99]

Zhu Y,Mo Y.Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations.ACS Appl Mater Interfaces2015;7:23685-93

[100]

Wenzel S,Leichtweiss T,Sann J.Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte.Solid State Ion2016;286:24-33

[101]

Wenzel S,Leichtweiß T.Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode.Chem Mater2016;28:2400-7

[102]

Cheng L,Chen W.The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.Phys Chem Chem Phys2014;16:18294-300

[103]

Aatiq A,Croguennec L,Delmas C.On the structure of Li3Ti2(PO4)3.J Mater Chem2002;12:2971-8

[104]

Ma C,Yin K.Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy.Nano Lett2016;16:7030-6

[105]

Zhu Y,Tepavcevic S.Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal.Adv Energy Mater2019;9:1803440

[106]

Hartmann P,Busche MR.Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes.J Phys Chem C2013;117:21064-74

[107]

Tolganbek N,Kalybekkyzy S.Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation.Mater Adv2022;3:3055-69

[108]

Schwöbel A,Jaegermann W.Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission.Solid State Ion2015;273:51-4

[109]

Han X,Fu KK.Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nat Mater2017;16:572-9

[110]

Sharafi A,Davis AL.Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12.Chem Mater2017;29:7961-8

[111]

Krauskopf T,Zeier WG.Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12.ACS Appl Mater Interfaces2019;11:14463-77

[112]

Liu T,Chen R.Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact.Electrochem Commun2017;79:1-4

[113]

Zhu J,Xiang Y.Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries.Chem Mater2020;32:4998-5008

[114]

Lee C,Lewis JA.Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface.ACS Energy Lett2021;6:3261-9

[115]

Tippens J,Afshar A.Visualizing chemomechanical degradation of a solid-state battery electrolyte.ACS Energy Lett2019;4:1475-83

[116]

Yuan C,Xu J.Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries.Adv Energy Mater2021;11:2101807

[117]

Xu X,Kapitanova OO,Sun J.Electro-Chemo-Mechanical failure of solid electrolytes induced by growth of internal lithium filaments.Adv Mater2022;34:e2207232

[118]

Cao D,Li Q,Xiang P.Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations.Matter2020;3:57-94

[119]

Monroe C.The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces.J Electrochem Soc2005;152:A396

[120]

Tsai CL,Chandran CV.Li7La3Zr2O12 interface modification for Li dendrite prevention.ACS Appl Mater Interfaces2016;8:10617-26

[121]

Xu B,Duan H.Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression.J Power Sources2017;354:68-73

[122]

Porz L,Sheldon BW.Mechanism of lithium metal penetration through inorganic solid electrolytes.Adv Energy Mater2017;7:1701003

[123]

Shen F,Xiao X.Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography.ACS Energy Lett2018;3:1056-61

[124]

Cheng EJ,Sakamoto J.Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte.Electrochim Acta2017;223:85-91

[125]

Zheng C,Su J.Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth.Chem Eng J2021;411:128508

[126]

Han F,Yue J.High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes.Nat Energy2019;4:187-96

[127]

Ping W,Lin Z.Reversible short-circuit behaviors in garnet-based solid-state batteries.Adv Energy Mater2020;10:2000702

[128]

Biao J,Cao Y.Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration.Adv Mater2023;35:e2208951

[129]

Huang X,Guo H.None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density.ACS Appl Energy Mater2018;1:5355-65

[130]

Kazyak E,Lepage WS.Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility.Matter2020;2:1025-48

[131]

Westover AS,Sacci RL.Deposition and confinement of Li metal along an artificial lipon-lipon interface.ACS Energy Lett2019;4:651-5

[132]

Lu Y,Archer LA.Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.Nat Mater2014;13:961-9

[133]

Lv Y,Ma L,Chen S.Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries.Adv Mater2022;34:e2106409

[134]

Judez X,Santiago A,Zhang H.Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives.J Power Sources2019;438:226985

[135]

Busche MR,Leichtweiss T.Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts.Nat Chem2016;8:426-34

[136]

Wang Q,Wu X,Yang J.A shuttle effect free lithium sulfur battery based on a hybrid electrolyte.Phys Chem Chem Phys2014;16:21225-9

[137]

Xu B,Liu H,Zhong S.Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries.ACS Appl Mater Interfaces2017;9:21077-82

[138]

Zhou H,Li Y.In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features.J Mater Chem A2019;7:16984-91

[139]

Wang C,Liu Y.Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes.Nano Energy2018;48:35-43

[140]

Nikodimos Y,Taklu BW.Resolving anodic and cathodic interface-incompatibility in solid-state lithium metal battery via interface infiltration of designed liquid electrolytes.J Power Sources2022;535:231425

[141]

Yan S,Yim C.Revealing the role of liquid electrolytes in cycling of garnet-based solid-state lithium-metal batteries.J Phys Chem C2022;126:14027-35

[142]

Tang J,You L.Effect of organic electrolyte on the performance of solid electrolyte for solid-liquid hybrid lithium batteries.ACS Appl Mater Interfaces2021;13:2685-93

[143]

Li J,Zhang L,Lassi U.Recent applications of ionic liquids in quasi-solid-state lithium metal batteries.Green Chem Eng2021;2:253-65

[144]

Armand M,MacFarlane DR,Scrosati B.Ionic-liquid materials for the electrochemical challenges of the future.Nat Mater2009;8:621-9

[145]

Kim HW,Lim YJ,Nam SC.Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries.J Mater Chem A2016;4:17025-32

[146]

Tsurumaki A,Mazzapioda L.Inorganic-organic hybrid electrolytes based on Al-doped Li7La3Zr2O12 and ionic liquids.Appl Sci2022;12:7318

[147]

Zhang Z,Liu Y.Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance.ChemSusChem2018;11:3774-82

[148]

Xiong S,Jankowski P.Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries.Adv Funct Mater2020;30:2001444

[149]

Basile A,O’Mullane AP.Stabilizing lithium metal using ionic liquids for long-lived batteries.Nat Commun2016;7:ncomms11794 PMCID:PMC4909938

[150]

Pervez SA,Vinayan BP.Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers.Small2020;16:e2000279

[151]

Cao Y,Lou S.A quasi-solid-state Li-S battery with high energy density, superior stability and safety.J Mater Chem A2019;7:6533-42

[152]

Zheng B,Wang H.Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer.ACS Appl Mater Interfaces2018;10:25473-82

[153]

Fuchs T,Otto S,Richter FH.Working Principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12 (LLZO) garnet-type solid electrolyte.Batteries Supercaps2021;4:1145-55

[154]

Liu B,Fu K.Garnet solid electrolyte protected Li-metal batteries.ACS Appl Mater Interfaces2017;9:18809-15

[155]

Yang G,Wang Q,Deng L.Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries.Mater Des2020;190:108563

[156]

Fei H,Passerini S.Hybrid organic/inorganic interphase for stabilizing a zinc metal anode in a mild aqueous electrolyte.ACS Appl Mater Interfaces2022;14:48675-81

[157]

Huo H,Sun J,Li Y.Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery.J Power Sources2017;372:1-7

[158]

Wu F,Kuenzel M.Bilayer solid electrolyte enabling quasi-solid-state lithium-metal batteries.J Power Sources2023;557:232514

[159]

Zheng J.New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes.ACS Appl Mater Interfaces2018;10:4113-20

[160]

Chen Z,Wu F.Stabilizing the Li1.3Al0.3Ti1.7(PO4)3|Li interface for high efficiency and long lifespan quasi-solid-state lithium metal batteries.ChemSusChem2022;15:e202200038 PMCID:PMC9325468

[161]

Chen Z,Kim J.Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer.Adv Energy Mater2021;11:2101339

PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

/