Polyurethane/Li10GeP2S12 composite electrolyte with high ions transfer number and ions capture for all-solid-state lithium batteries

Peng Cui , Chun Sun , Wei Wei

Energy Materials ›› 2023, Vol. 3 ›› Issue (2) : 300017

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (2) :300017 DOI: 10.20517/energymater.2022.83
Article

Polyurethane/Li10GeP2S12 composite electrolyte with high ions transfer number and ions capture for all-solid-state lithium batteries

Author information +
History +
PDF

Abstract

Polymer/ceramic composite electrolytes have recently received a lot of attention because they combine the advantages of high ionic conductivity of inorganic ceramics and the inherent elasticity of polymer constituents. Nonetheless, the interaction between the ceramic particles and the polar functional groups on the polymer molecules would affect the ion transport rate, which is an important factor to consider when developing a polymer/ceramic composite electrolyte. We present a composite elastic electrolyte based on polyurethane (PU) with high ionic conductivity of 10-3 S/cm and excellent mechanical properties (stress-strain) of 4.5 MPa by incorporating ceramic particles into the ion conduction chains on PU. This method improves the interaction between PU/LGPS and Li+ ions and the conduction of Li+ ions at the bi-phase interface, yielding a high Li+ transfer number of 0.56. After 2,000 cycles, the capacity retention rates of the batteries assembled by [LFP|(PU-LGPS)/Li+|Li] are 95.7% (0.2 C) and 87.8% (5 C), respectively. The Li symmetric battery test demonstrates the PU/LGPS composite electrolyte's high stability over 50 days. The current study presents a novel approach to developing high-performance ceramic/polymer composite electrolytes.

Keywords

Polymer/ceramic composite electrolytes / ions transfer number

Cite this article

Download citation ▾
Peng Cui, Chun Sun, Wei Wei. Polyurethane/Li10GeP2S12 composite electrolyte with high ions transfer number and ions capture for all-solid-state lithium batteries. Energy Materials, 2023, 3(2): 300017 DOI:10.20517/energymater.2022.83

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough J.Challenges for rechargeable batteries.J Power Sources2011;196:6688-94

[2]

Cui P,Sun C.High ion conductivity based on a polyurethane composite solid electrolyte for all-solid-state lithium batteries.RSC Adv2022;12:3828-37 PMCID:PMC8981059

[3]

Kamaya N,Yamakawa Y.A lithium superionic conductor.Nat Mater2011;10:682-6

[4]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[5]

Chan CK,Mark Weller J.Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries.Electrochim Acta2017;253:268-80

[6]

Shen Y,Han S,Peng Z.Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes.Joule2018;2:1674-89

[7]

Cheng X,Yao Y,Zhang Q.Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes.Chem2019;5:74-96

[8]

Zhou Q,Dong S,Cui G.Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries.Adv Mater2019;31:e1902029

[9]

Chen R,Guo X,Wu F.The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons.Mater Horiz2016;3:487-516

[10]

Li Z,Zhu JK.Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites.ACS Appl Mater Interfaces2019;11:784-91

[11]

Ju L,Pan Y.Preparation and conductivity characteristic of PEO-Li1.3Al0.3Ti1.7(PO4)3 composite polymer electrolytes.J Mater Sci Eng2014;6:867-70

[12]

Xin S,Wang S,Yin Y.Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects.ACS Energy Lett2017;2:1385-94

[13]

Bao J,Yu R,Huang Y.Solid polymer electrolyte based on waterborne polyurethane for all-solid-state lithium ion batteries.J Appl Polym Sci2017;134:45554

[14]

Wen TC,Digar M.Compositional effect on the morphology and ionic conductivity of thermoplastic polyurethane based electrolytes.Eur Polym J2002;38:1039-48

[15]

Bar N.Quasi-solid semi-interpenetrating polymer networks as electrolytes: part II. Assessing the modes of ion-ion and ion-polymer interactions employing mid-fourier transform infrared vibrational spectroscopy.J Phys Chem C2014;118:10640-50

[16]

Cui P,Dai H.Polyurethane-P2S5 composite-based solid-state electrolyte assists low polarization and high stability all-solid-state lithium-ion batteries.RSC Adv2022;12:27881-8 PMCID:PMC9520676

[17]

Badri KBH,Shahrom M,Baderuliksan NY.FTIR spectroscopy analysis of the prepolymerization of palm-based polyurethane.Solid State Sci Technol2010;18:1-8Available from: https://scholar.google.com/citations?view_op=view_citation&hl=ja&user=pNmzBRcAAAAJ&citation_for_view=pNmzBRcAAAAJ:u-x6o8ySG0sC [Last accessed on 6 April 2023]

[18]

Hatchett DW,Kinyanjui JM,Sapochak L.FTIR analysis of thermally processed PU foam.Polym Degrad Stab2005;87:555-61

[19]

Tang Q.Structure analysis of polyether-based thermoplastic polyurethane elastomers by FTIR, 1H NMR and 13C NMR.Int J Polym Anal Charact2017;22:569-74

[20]

Sourisseau C,Fouassier M,Elder SH.Infrared, Raman, resonance Raman spectra and lattice dynamics calculations of the solid potassium (I) nickel (II) thiophosphate compound, KNiPS4.Chem Phys1995;195:351-69

[21]

Sang L,Gewirth AA.Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping.Chem Mater2017;29:3029-37

[22]

Sharma P,Diwan P.Impact of CuS on the crystallization kinetics of Na2S-P2S5 glasses.J Non Cryst Solids2017;477:31-41

[23]

Zhu J,Wu Y.A highly stable aqueous Zn/VS2 battery based on an intercalation reaction.Appl Surf Sci2021;544:148882

[24]

Guo W,Si Y,Fu Y.Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery.Nat Commun2021;12:3031 PMCID:PMC8163853

[25]

Balamurugan S,Prakash I.Capacity fading mechanism of Li2O loaded NiFe2O4/SiO2 aerogel anode for lithium-ion battery: ex-situ XPS analysis.Appl Surf Sci2021;535:147677

[26]

Wang Z,Guo W.Anion intercalation of VS4 triggers atomic sulfur transfer to organic disulfide in rechargeable lithium battery.Adv Funct Mater2021;31:2009875

[27]

Tallapally V,Demchenko DO,Arachchige IU.Ge1-xSnx alloy quantum dots with composition-tunable energy gaps and near-infrared photoluminescence.Nanoscale2018;10:20296-305

[28]

Zhang S,Wang H.A covalent P-C bond stabilizes red phosphorus in an engineered carbon host for high-performance lithium-ion battery anodes.ACS Nano2021;15:3365-75

[29]

Fan L,Zhang Q,Lu B.Graphite anode for a potassium-ion battery with unprecedented performance.Angew Chem Int Ed2019;131:10610-5

[30]

Ma J,Zhang Z.Two-dimensional materials as a stabilized interphase for the solid-state electrolyte Li10GeP2S12 in lithium metal batteries.J Mater Chem A2021;9:4810-21

[31]

Trovati G,Neto SC,Chierice GO.Characterization of polyurethane resins by FTIR, TGA, and XRD.J Appl Polym Sci2010;115:263-8

[32]

Chen B,Huang Z,Chen S.One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery.J Power Sources2016;331:322-31

[33]

Baik J,Shim J,Choi Y.Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries.Polymer2016;99:704-12

[34]

Bandyopadhyay S,Singh R.Electrical conductivities and Li ion concentration-dependent diffusivities, in polyurethane polymers doped with lithium trifluoromethanesulfonimide (LiTFSI) or lithium perchlorate (LiClO4).Solid State Ion2010;181:1727-31

[35]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[36]

Blöchl PE.Projector augmented-wave method.Phys Rev B Condens Matter1994;50:17953-79

[37]

Hafner J.Ab-initio simulations of materials using VASP: density-functional theory and beyond.J Comput Chem2008;29:2044-78

[38]

Zhao Y,Peng G.A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries.J Power Sources2016;301:47-53

[39]

Pan K,Qian W.A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries.Adv Mater2020;32:e2000399

[40]

Chen B,Chen X.A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery.Electrochim Acta2016;210:905-14

[41]

Fei Y,Long Y.New single lithium ion conducting polymer electrolyte derived from delocalized tetrazolate bonding to polyurethane.Electrochim Acta2019;299:902-13

[42]

Bao J,Tao C.Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries.J Power Sources2018;389:84-92

[43]

Deng T,He X.In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries.Chem2021;7:3052-68

[44]

Tian Z,Feng D,Wu P.Modulating the coordination environment of lithium bonds for high performance polymer electrolyte batteries.ACS Nano2023;17:3786-96

[45]

Wei Y,Zhou W.Enabling all-solid-state Li metal batteries operated at 30 °C by molecular regulation of polymer electrolyte.Adv Energy Mater2023;13:2203547

PDF

229

Accesses

0

Citation

Detail

Sections
Recommended

/