Revealing energy storage mechanism of CsPbBr3 perovskite for ultra-stable symmetric supercapacitors

Le Pang , Minh Tam Hoang , Anthony P. O’Mullane , Hongxia Wang

Energy Materials ›› 2023, Vol. 3 ›› Issue (2) : 300012

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (2) :300012 DOI: 10.20517/energymater.2022.81
Article

Revealing energy storage mechanism of CsPbBr3 perovskite for ultra-stable symmetric supercapacitors

Author information +
History +
PDF

Abstract

Inorganic metal halide perovskites such as CsPbX3 (X = I, Br) have been intensively studied in optoelectrical applications such as solar cells and light-emitting diodes due to better thermal and structural stability compared to the organic-inorganic hybrid perovskite counterparts. Limited studies have shown that inorganic perovskites could potentially be promising electrode materials in energy storage devices like supercapacitors. Nevertheless, there is some controversy regarding their electrochemical properties and energy storage mechanism. Furthermore, the stability of the inorganic perovskites in electrochemical energy storage systems is a big concern. In this work, we studied the electrochemical properties of CsPbBr3 electrodes composed of pure CsPbBr3 nanocrystals without any additives to reveal their intrinsic electrochemical characteristics. We carefully selected the electrolyte solution composed of tetrabutylammonium hexafluorophosphate in dichloromethane and the electrode substrate based on FTO glass to ensure they do not cause damage to the perovskite material or introduce side reactions during the charge-discharge process. The results showed that the CsPbBr3 perovskite demonstrates electrical double-layer capacitive behaviour, and the specific capacitance of the electrode can reach 528 mF g-1. A symmetrical supercapacitor based on this perovskite demonstrated exceptional cycling stability with a capacitance retention of 90% after 10,000 charge and discharge cycles at a discharge current density of 100 mA g-1. The device also exhibited a constant power density of 25.0 mW kg-1 with increasing energy density up to 33.3 mWh kg-1. Further characterizations have revealed the important role of the large cations and anions of tetrabutylammonium hexafluorophosphate in the electrolyte in stabilizing the perovskite electrode material.

Keywords

CsPbBr3 perovskite nanocrystals / energy storage mechanism / supercapacitors / stability / long cycling lifetime

Cite this article

Download citation ▾
Le Pang, Minh Tam Hoang, Anthony P. O’Mullane, Hongxia Wang. Revealing energy storage mechanism of CsPbBr3 perovskite for ultra-stable symmetric supercapacitors. Energy Materials, 2023, 3(2): 300012 DOI:10.20517/energymater.2022.81

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumar R.Hybrid halide perovskite-based electrochemical supercapacitors: recent progress and perspective.Energy Technol2022;10:2100889

[2]

Narayanan S,Tavakoli MM.Metal halide perovskites for energy storage applications.Eur J Inorg Chem2021;2021:1201-12

[3]

Wang R,Xue J,Zhu K.Prospects for metal halide perovskite-based tandem solar cells.Nat Photon2021;15:411-25

[4]

Kostopoulou A,Stratakis E.Perovskite nanostructures for photovoltaic and energy storage devices.J Mater Chem A2018;6:9765-98

[5]

Xia HR,Peng LM.Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries.Chem Commun2015;51:13787-90

[6]

Kostopoulou A,Makri D,Savva K.Highly stable metal halide perovskite microcube anodes for lithium-air batteries.J Power Sources2020;3:100015

[7]

Paul T,Chatterjee BK.Electrochemical performance of 3D network CsPbBr3 perovskite anodes for Li-ion batteries: experimental venture with theoretical expedition.J Phys Chem C2021;125:16892-902

[8]

Liu S,Tan L,Liu G.All-inorganic halide perovskite CsPbBr3@CNTs composite enabling superior lithium storage performance with pseudocapacitive contribution.Electrochim Acta2021;367:137352

[9]

Samu GF,Kamat PV.Electrochemistry and spectroelectrochemistry of lead halide perovskite films: materials science aspects and boundary conditions.Chem Mater2018;30:561-9 PMCID:PMC5828706

[10]

Zhou S,Yu H,Wong C.Thin film electrochemical capacitors based on organolead triiodide perovskite.Adv Electron Mater2016;2:1600114

[11]

Wang T,Wang Y.Approaches to enhancing electrical conductivity of pristine metal-organic frameworks for supercapacitor applications.Small2022;18:2203307

[12]

Zhu Y,Stoller MD.Carbon-based supercapacitors produced by activation of graphene.Science2011;332:1537-41

[13]

Wang T,Yu F,Wang H.Boosting the cycling stability of transition metal compounds-based supercapacitors.Energy Stor Mater2019;16:545-73

[14]

Choudhary N,Moore J.Supercapacitors: asymmetric supercapacitor electrodes and devices.Adv Mater2017;29:1605336

[15]

Popoola I,Oloore L,AlGhamdi J.Fabrication of organometallic halide perovskite electrochemical supercapacitors utilizing quasi-solid-state electrolytes for energy storage devices.Electrochim Acta2020;332:135536

[16]

Pious JK,Muthu C,Krishna S.Zero-dimensional lead-free hybrid perovskite-like material with a quantum-well structure.Chem Mater2019;31:1941-5

[17]

Li T,Adams K,Thijssen JH.Thiourea bismuth iodide: crystal structure, characterization and high performance as an electrode material for supercapacitors.Batteries Supercaps2019;2:568-75

[18]

Maji P,Sadhukhan P,Das S.Fabrication of symmetric supercapacitor using cesium lead iodide (CsPbI3) microwire.Mater Lett2018;227:268-71

[19]

Thakur S,Maiti S.All-inorganic CsPbBr3 perovskite as potential electrode material for symmetric supercapacitor.Solid State Sci2021;122:106769

[20]

Chen L,Wang Y.Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide.Nat Commun2016;7:11741 PMCID:PMC4876480

[21]

Li J,Chang J.A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction.Adv Powder Technol2022;1:100030

[22]

Yao D,Pham ND.Hindered formation of photoinactive δ-FAPbI3 phase and hysteresis-free mixed-cation planar heterojunction perovskite solar cells with enhanced efficiency via potassium incorporation.J Phys Chem Lett2018;9:2113-20

[23]

Wang Y,Kang Q.Patterning islandlike MnO2 arrays by breath-figure templates for flexible transparent supercapacitors.ACS Appl Mater Interfaces2018;10:27001-8

[24]

Chu D,Song X.A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor.J Colloid Interface Sci2020;568:130-8

[25]

Zhang L,Wang Z,Dorrell DG.A review of supercapacitor modeling, estimation, and applications: a control/management perspective.Renew Sustain Energy Rev2018;81:1868-78

[26]

Hoang MT,Tang C.Potassium doping to enhance green photoemission of light-emitting diodes based on CsPbBr3 perovskite nanocrystals.Adv Opt Mater2020;8:2000742

[27]

Hoang MT,Yang Y.Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness.Nano-Micro Lett2022;14:69 PMCID:PMC8891416

[28]

Kostopoulou A,Nasikas NK.Perovskite nanocrystals for energy conversion and storage.Nanophotonics2019;8:1607-40

[29]

Hsieh YT,Liu WR.Enhancing the water resistance and stability of CsPbBr3 perovskite quantum dots for light-emitting-diode applications through encapsulation in waterproof polymethylsilsesquioxane aerogels.ACS Appl Mater Interfaces2020;12:58049-59

[30]

Zhu Y,Tao S,Wu Z.Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances.Sci Rep2014;4:5787 PMCID:PMC4148663

[31]

Barbieri O,Herzog A.Capacitance limits of high surface area activated carbons for double layer capacitors.Carbon2005;43:1303-10

[32]

Mohanadas D,Azman NHN,Sulaiman Y.Facile synthesis of PEDOT-rGO/HKUST-1 for high performance symmetrical supercapacitor device.Sci Rep2021;11:11747 PMCID:PMC8175570

[33]

Lin T,Liu F.Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage.Science2015;350:1508-13

[34]

Yen MC,Liu KH.All-inorganic perovskite quantum dot light-emitting memories.Nat Commun2021;12:4460 PMCID:PMC8298456

[35]

Gomez CM,Braga HM.Possible charge-transfer-induced conductivity enhancement in TiO2 microtubes decorated with perovskite CsPbBr3 nanocrystals.Langmuir2020;36:5408-16

[36]

Chen C,Guo P.Ionic transport characteristics of large-size CsPbBr3 single crystals.Mater Res Express2019;6:115808

[37]

Pu X,Fu C.Understanding and calibration of charge storage mechanism in cyclic voltammetry curves.Angew Chem Int Ed2021;60:21310-8

[38]

Jiang Q,Li J.Electrochemical doping of halide perovskites with ion intercalation.ACS Nano2017;11:1073-9

[39]

Hwang JH,Choi H.Improving electrochemical Pb2+ detection using a vertically aligned 2D MoS2 nanofilm.Anal Chem2019;91:11770-7

[40]

Zhang X,Chen Z,Naidu R.Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.Water Res2011;45:3481-8

[41]

Pala IR.ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water.ACS Appl Mater Interfaces2012;4:2160-7

[42]

Woo YW,Kim GY,Walsh A.Factors influencing halide vacancy transport in perovskite solar cells.Discov Mater2022;2:8

[43]

Nur’aini A,Oh I.Ion migration in metal halide perovskites.J Electrochem Sci Technol2022;13:71-7

[44]

Li N,Guo Y.Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering.Adv Mater2022;34:e2108102

[45]

Cai J,Chen M.Ion migration in the all-inorganic perovskite CsPbBr3 and its impacts on photodetection.J Phys Chem C2022;126:10007-13

[46]

Hussain T,Anjum A.Experimental evidence of ion migration in aged inorganic perovskite solar cells using non-destructive RBS depth profiling.Mater Adv2022;3:7846-53

[47]

Bella F,Cavallo C.Caesium for perovskite solar cells: an overview.Chem A Eur J2018;24:12183-205

PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

/