Advances in lithium-ion battery materials for ceramic fuel cells

Xiaomi Zhou , Jingjing Yang , Ruoming Wang , Wei Zhang , Sining Yun , Baoyuan Wang

Energy Materials ›› 2022, Vol. 2 ›› Issue (6) : 200041

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (6) :200041 DOI: 10.20517/energymater.2022.76
Mini Review

Advances in lithium-ion battery materials for ceramic fuel cells

Author information +
History +
PDF

Abstract

Lithium-ion batteries (LIBs) and ceramic fuel cells (CFCs) are important for energy storage and conversion technologies and their materials are central to developing advanced applications. Although there are many crosslinking research activities, e.g., through materials and some common scientific fundamentals employed for both LIB and CFCs, crosslinking scientific aspects to achieve a comprehensive understanding are missing. There is a lack of such a review to promote and guide further research and development in the crosslinking of LIBs and CFCs. Herein, we review the existing application of LIB materials in CFCs to discover the scientific advances of lithium-ion and proton transport cooperation and identify the new directions of Li-CFCs in the future. This review is the first to propose CFC advances, especially at low temperatures (300-600 °C) by applying LIB materials to practical devices and highlight the material properties and new device functions with enhanced performance, as well as the scientific mechanisms and principles. Furthermore, we seek to deepen the scientific understanding of materials science, ion transport mechanisms and semiconductor electrochemistry to benefit both the battery and fuel cell fields.

Keywords

Lithium-ion batteries / ceramic fuel cells / built-in electric field / semiconducting materials

Cite this article

Download citation ▾
Xiaomi Zhou, Jingjing Yang, Ruoming Wang, Wei Zhang, Sining Yun, Baoyuan Wang. Advances in lithium-ion battery materials for ceramic fuel cells. Energy Materials, 2022, 2(6): 200041 DOI:10.20517/energymater.2022.76

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao X,Huang K,Wu J.Strained carbon steel as a highly efficient catalyst for seawater electrolysis.Energy Mater2022;2:200010

[2]

Zhu B,Xia C.A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology.Energy Mater2022;1:100002

[3]

Stambouli A.Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy.Renew Sustain Energy Rev2002;6:433-55

[4]

Chang H,Han X.Recent developments in advanced anode materials for lithium-ion batteries.Energy Mater2022;1:100003

[5]

Maleki H.Role of the cathode and anode in heat generation of Li-ion cells as a function of state of charge.J Power Sources2004;137:117-27

[6]

Curi M,Furtado J.Dispersant effects on YSZ electrolyte characteristics for solid oxide fuel cells.Ceram Int2015;41:6141-8

[7]

Raza R,Rafique A,Lund P.Functional ceria-based nanocomposites for advanced low-temperature (300-600 °C) solid oxide fuel cell: a comprehensive review.Mater Today Energy2020;15:100373

[8]

Sebastian L,Gopalakrishnan J.Probing the mobility of lithium in LISICON: Li+/H+ exchange studies in Li2 ZnGeO4 and Li2+2x Zn1-xGeO4.J Mater Chem2003;13:1400-5

[9]

Wei T,Chen Y,Liu M.Promising proton conductor for intermediate-temperature fuel cells: Li13.9Sr0.1Zn(GeO4)4.Chem Mater2017;29:1490-5

[10]

Zhu B,Raza R.Schottky junction effect on high performance fuel cells based on nanocomposite materials.Adv Energy Mater2015;5:1401895

[11]

Ensling D,Schmid S,Thissen A.Nonrigid band behavior of the electronic structure of LiCoO2 thin film during electrochemical li deintercalation.Chem Mater2014;26:3948-56

[12]

Manthiram A.Lithium-based polyanion oxide cathodes.Nat Energy2021;6:844-5

[13]

Xia T,Murowchick J,Chen X.Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery.Nano Lett2013;13:5289-96

[14]

Ruan J,Song Y.Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery.Energy Mater2022;1:100018

[15]

Guo Z,Qiu H.Improved cycle stability and rate capability of graphene oxide wrapped tavorite LiFeSO4 F as cathode material for lithium-ion batteries.ACS Appl Mater Interfaces2015;7:13972-9

[16]

Wang L,Chen B.In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries.Nat Commun2020;11:5889 PMCID:PMC7674427

[17]

Fan L.Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells.J Power Sources2016;306:369-77

[18]

Jing Y,Liu Q,Zhu B.Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.J Nanosci Nanotechnol2012;12:5102-5

[19]

Zhao Y,Fan L.Synthesis of hierarchically porous LiNiCuZn-oxide and its electrochemical performance for low-temperature fuel cells.Int J Hydrogen Energy2014;39:12317-22

[20]

Liu X,Tong Y.Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2-δ: improving cell performance via on-line reaction.Electrochim Acta2019;295:325-32

[21]

Mushtaq N,Xia C.Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3-δ perovskite oxide for enhanced oxygen reduction catalytic performance.J Catal2021;395:168-77

[22]

Zhu B,Mushtaq N.Semiconductor electrochemistry for clean energy conversion and storage.Electrochem Energy Rev2021;4:757-92

[23]

Goodenough JB.The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013;135:1167-76

[24]

Becker D,Hausbrand R.Adsorption of diethyl carbonate on LiCoO2 thin films: formation of the electrochemical interface.J Phys Chem C2014;118:962-7

[25]

Wang B,Yun S.Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells.NPG Asia Mater2019;11:

[26]

Xing Y,Wang F.Cubic silicon carbide/zinc oxide heterostructure fuel cells.Appl Phys Lett2020;117:162105

[27]

Lu Y,Shi J.Advanced low-temperature solid oxide fuel cells based on a built-in electric field.Energy Mater2022;1:100007

[28]

Gao B,Ma Y.Li+ Transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme.Chem Mater2020;32:85-96

[29]

Rauf S,Shah M.Low-temperature solid oxide fuel cells based on Tm-doped SrCeO2-δ semiconductor electrolytes.Mater Today Energy2021;20:100661

[30]

Ni J,Li L.Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field.Adv Mater2019;31:e1902603

[31]

Wang F,Wu H.Surface-engineered homostructure for enhancing proton transport.Small Methods2022;6:e2100901

[32]

Xing Y,Li L.Proton shuttles in CeO2/CeO2-δ core-shell structure.ACS Energy Lett2019;4:2601-7

[33]

Wang Y,Wang Z,Li H.Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity.J Mater Chem A2022;10:4517-32

[34]

Ellis BL,Nazar LF.Positive electrode materials for Li-ion and Li-batteries.Chem Mater2010;22:691-714

[35]

Morgan D,Ceder G.Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials.Electrochem Solid-State Lett2004;7:A30

[36]

Gibot P,Laffont L.Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4.Nat Mater2008;7:741-47

[37]

Zhou W.Fuel cells: hydrogen induced insulation.Nat Energy2016;1:16078

[38]

Yoo P.Metal-to-insulator transition in SmNiO3 induced by chemical doping: a first principles study.Mol Syst Des Eng2018;3:264-74

[39]

Zhu B,Abbas G.An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity.Adv Funct Mater2011;21:2465-9

[40]

Shao K,Zhang G,Maliutina K.Approaching durable single-layer fuel cells: promotion of electroactivity and charge separation via nanoalloy redox exsolution.ACS Appl Mater Interfaces2019;11:27924-33

[41]

Fan L,Chen M.Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells.Int J Hydrogen Energy2013;38:11398-405

[42]

Zhu B,Zhao Y,Xiong D.Functional semiconductor-ionic composite GDC-KZnAl/LiNiCuZnOx for single-component fuel cell.RSC Adv2014;4:9920

[43]

Hu H,Zhu Z,Liu X.Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2-δ-Li0.3Ni0.6Cu0.07Sr0.03O2-δ layer.J Power Sources2014;248:577-81

[44]

Hu H,Zhu Z,Zhu B.Time-dependent performance change of single layer fuel cell with Li0.4Mg0.3Zn0.3O/Ce0.8Sm0.2O2-δ composite.Int J Hydrogen Energy2014;39:10718-23

[45]

Zhu B,Deng H.LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells.J Power Sources2016;316:37-43

[46]

Hu H,Muhammad A.Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell.J Power Sources2015;286:388-93

[47]

Ganesan P,Haran B,Popov BN.Study of cobalt-doped lithium-nickel oxides as cathodes for MCFC.J Power Sources2002;111:109-20

[48]

Zhang W,Wang B.The fuel cells studies from ionic electrolyte Ce0.8Sm0.05Ca0.15O2-δ to the mixture layers with semiconductor Ni0.8Co0.15Al0.05LiO2-δ.Int J Hydrogen Energy2016;41:18761-8

[49]

Yuan K,Dong W.Applying low-pressure plasma spray (LPPS) for coatings in low-temperature SOFC.Int J Hydrogen Energy2017;42:22243-9

[50]

Chen G,Luo Y.Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells.Int J Hydrogen Energy2018;43:417-25

[51]

Wang K,Cai H.Rational design of favourite lithium-ion cathode materials as electrodes for symmetrical solid oxide fuel cells.Ceram Int2021;47:30536-45

[52]

Liu Y,Wang B.Layered LiCoO2-LiFeO2 heterostructure composite for semiconductor-based fuel cells.Nanomaterials2021;11:1224 PMCID:PMC8148518

[53]

Raza R,Singh T,Li S.LiAlO2-LiNaCO3 composite electrolyte for solid oxide fuel cells.J Nanosci Nanotechnol2011;11:5402-7

[54]

Zhang W,Wang B.Mixed ionic-electronic conductor membrane based fuel cells by incorporating semiconductor Ni0.8Co0.15Al0.05LiO2-δ into the Ce0.8Sm0.2O2-δ-Na2CO3 electrolyte.Int J Hydrogen Energy2016;41:15346-53

[55]

Lan R.High ionic conductivity in a LiFeO2-LiAlO2 composite under H2/air fuel cell conditions.Chem A Eur J2015;21:1350-8

[56]

Zhu J,Zhu B.Polymer-assistant ceramic nanocomposite materials for advanced fuel cell technologies.Ceram Int2017;43:5484-9

[57]

Fan L,Wang X,Zhu B.Understanding the electrochemical mechanism of the core-shell ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell.J Mater Chem A2014;2:5399

[58]

Tu Z,Liu M.Remarkable ionic conductivity in a LZO-SDC composite for low-temperature solid oxide fuel cells.Nanomaterials2021;11:2277 PMCID:PMC8466903

[59]

Paydar S,Huang L.Performance analysis of LiAl0.5Co0.5O2 nanosheets for intermediate-temperature fuel cells.Int J Hydrogen Energy2021;46:26478-88

[60]

Zhu B,He Y,Wang H.A commercial lithium battery LiMn-oxide for fuel cell applications.Mater Lett2014;126:85-8

[61]

Pan C,Lu J.Microstructure and catalytic activity of Li0.15Ni0.25Cu0.3Zn0.3O2-δ-Ce0.8Sm0.2O1.9-carbonate nanocomposite materials functioning as single component fuel cell.Int J Hydrogen Energy2014;39:19140-7

[62]

Lan R.Novel proton conductors in the layered oxide material LixlAl0.5Co0.5O2.Adv Energy Mater2014;4:1301683

[63]

Gao J,Akbar M.Single layer low-temperature SOFC based on Ce0.8Sm0.2O2-δ-La0.25Sr0.75Ti1O3-δ-Ni0.8Co0.15Al0.05LiO2-δ composite material.Int J Hydrogen Energy2021;46:9775-81

[64]

Lu Y,Li J,Wang B.A p-n-n heterostructure composite for low-temperature solid oxide fuel cells.J Alloys Compd2022;890:161765

[65]

Tayyab Z,Xia C.Advanced LT-SOFC based on reconstruction of the energy band structure of the LiNi0.8Co0.15Al0.05O2-Sm0.2Ce0.8O2-δ heterostructure for fast ionic transport.ACS Appl Energy Mater2021;4:8922-32

[66]

Lu Y,Xia C.Catalytic membrane with high ion-electron conduction made of strongly correlated perovskite LaNiO3 and Ce0.8Sm0.2O2-δ for fuel cells.J Catal2020;386:117-25

[67]

Akbar M,Shakir MI.Effect of sintering temperature on properties of LiNiCuZn-Oxide: a potential anode for solid oxide fuel cell.Mater Res Express2019;6:105505

[68]

Zhang J,Xu R,Yang X.Electrochemical properties and catalyst functions of natural CuFe oxide mineral-LZSDC composite electrolyte.Int J Hydrogen Energy2017;42:22185-91

[69]

Ganesh KS,Kim J.Ionic conducting properties and fuel cell performance developed by band structures.J Phys Chem C2019;123:8569-77

[70]

Xia C,Wang B.Mixed-conductive membrane composed of natural hematite and Ni0.8Co0.15Al0.05LiO2-δ for electrolyte layer-free fuel cell.Adv Mater Lett2017;8:114-21

[71]

Xia C,Shen L.Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO.Int J Hydrogen Energy2018;43:12825-34

[72]

Cai Y,Akbar M.A bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2-delta-SrTiO3 for low-temperature solid oxide fuel cells.Nanomicro Lett2021;13:46 PMCID:PMC8187505

[73]

Liu X,Xia C.Study on charge transportation in the layer-structured oxide composite of SOFCs.Int J Hydrogen Energy2018;43:12773-81

[74]

He Y,Zhang X.Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode.ACS Appl Energy Mater2020;3:4134-8

[75]

Fan Q,Wang H.Nanoscale redox reaction unlocking the next-generation low temperature fuel cell.Energy Mater2022;2:200002

[76]

Yang D,Liu H.Electrochemical performance of a Ni0.8Co0.15Al0.05LiO2 cathode for a low temperature solid oxide fuel cell.Int J Hydrogen Energy2021;46:10438-47

[77]

Wei L,Yuan M.Interface engineering towards low temperature in-situ densification of SOFC.Int J Hydrogen Energy2020;45:10030-8

[78]

Peng X,Liu Y.Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries.Energy Mater2022;1:100011

[79]

Bi Z.Solidification for solid-state lithium batteries with high energy density and long cycle life.Energy Mater2022;2:200011

[80]

Su H,Liu Y.Recent progress of sulfide electrolytes for all-solid-state lithium batteries.Energy Mater2022;2:200005

[81]

Bashir T,Song Y.A review of the energy storage aspects of chemical elements for lithium-ion based batteries.Energy Mater2022;1:100019

[82]

Xia S,Zhang Z,Liu W.Practical challenges and future perspectives of all-solid-state lithium-metal batteries.Chem2019;5:753-85

[83]

Dermenci KB,Turan S.Al stabilized Li7La3Zr2O12 solid electrolytes for all-solid state Li-ion batteries.Int J Hydrogen Energy2016;41:9860-7

[84]

Anantharamulu N,Rambabu G,Radha V.A wide-ranging review on Nasicon type materials.J Mater Sci2011;46:2821-37

[85]

Yadav P,Kathribail AR,Mierlo JV.Improved performance of solid polymer electrolyte for lithium-metal batteries via hot press rolling.Polymers2022;14:363 PMCID:PMC8839853

[86]

Castillo J,Santiago A.Perspective of polymer-based solid-state Li-S batteries.Energy Mater2022;2:200003

[87]

Uitz M,Bottke P.Ion dynamics in solid electrolytes for lithium batteries.J Electroceram2017;38:142-56

[88]

Wang L,Dai S.Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries.Mater Today Energy2019;11:46-60

[89]

Fleischmann S,Augustyn V.Nanostructured transition metal oxides for electrochemical energy storage. In Nanda J, Augustyn V, editors, Transition Metal Oxides for Electrochemical Energy Storage. 2022. pp. 183-212.

[90]

Williams QL,Zaab S,Alqahtani Y.Application of carbon nanomaterials on the performance of Li-ion batteries. In Misra P, editor, Spectroscopy and Characterization of Nanomaterials and Novel Materials. 2022. pp. 361-414.

[91]

Chernova NA,Xiao J,Breger J.Layered LixNiyMnyCo1-2yO2 cathodes for Lithium ion batteries: understanding local structure via magnetic properties.Chem Mater2007;19:4682-93

[92]

Zhang X,Zhou K.Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive - pentafluoropyridine.Energy Mater2021;1:100005

[93]

Yang Z,Wei Z.Multi-dimensional correlation of layered Li-rich Mn-based cathode materials.Energy Mater2022;2:200006

[94]

Du Z,Daniel C,Li J.Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries.J Appl Electrochem2017;47:405-15

[95]

Kim H,Zeb K.A comprehensive review of Li-ion battery materials and their recycling techniques.Electronics2020;9:1161

[96]

Hautier G,Chen H,Ong SP.Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations.J Mater Chem2011;21:17147

[97]

Li J,Martin S.Lithium ion conductivity in single crystal LiFePO4.Solid State Ionics2008;179:2016-9

[98]

Shao Y,Li J,Huang X.Evaluation of the electrochemical and expansion performances of the Sn-Si/graphite composite electrode for the industrial use.Energy Mater2022;2:200004

[99]

Wang Y,Zhong J.Hierarchical Ni- and Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anodes.Energy Mater2022;1:100012

[100]

Xiao Y,Xu L,Huang J.Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries.Energy Mater2022;1:100013

[101]

Zhang L.Electrolyte solvation structure as a stabilization mechanism for electrodes.Energy Mater2022;1:100004

[102]

Huang T,Xiao J,Wang G.Recent research on emerging organic electrode materials for energy storage.Energy Mater2022;1:100009

[103]

Li C,Zhu Y.Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries.Energy Mater2022;1:100017

[104]

Tarascon JM.Issues and challenges facing rechargeable lithium batteries.Nature2001;414:359-67

[105]

Thangadurai V,Weppner WJF.Novel fast lithium ion conduction in garnet-type Li5La3M2O12(M:Nb,Ta).ChemInform2003;34:

[106]

Kataoka K.High ionic conductor member of garnet-type oxide Li6.5La3Zr1.5Ta0.5O12.ChemElectroChem2018;5:2551-7

[107]

Jasinski G,Chachulski B.Lisicon solid electrolyte electrocatalytic gas sensor.J Eur Ceram Soc2005;25:2969-72

[108]

Ma Y,Kitsche D.Cycling performance and limitations of LiNiO2 in solid-state batteries.ACS Energy Lett2021;6:3020-8

[109]

Tukamoto H.Electronic conductivity of LiCoO2 and its enhancement by magnesium doping.J Electrochem Soc1997;144:3164-8

[110]

Xiao P,Chen X.LiNi0.8Co0.15Al0.05O2: enhanced electrochemical performance from reduced cationic disordering in Li slab.Sci Rep2017;7:1408

[111]

Liu Y.Reproduction of Li battery LiNixMnyCo1-x-yO2 positive electrode material from the recycling of waste battery.Int J Hydrogen Energy2017;42:18189-95

[112]

Orikasa Y,Yamashige H.Ionic conduction in lithium ion battery composite electrode governs cross-sectional reaction distribution.Sci Rep2016;6:26382 PMCID:PMC4872260

[113]

Choi D,Bae IT.LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode.Nano Lett2010;10:2799-805

[114]

Rao B, Padmaraj O, Narsimulu D, Venkateswarlu M, Satyanarayana N. A.C conductivity and dielectric properties of spinel LiMn2O4 nanorods.Ceram Int2015;41:14070-7

[115]

Shah MY,Mushtaq N.ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells.Energy Mater2022;2:200031

[116]

Chen G,He Y.Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte.J Mater Chem A2019;7:9638-45

PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

/