Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries

Seongsoo Park , Rashma Chaudhary , Sang A Han , Hamzeh Qutaish , Janghyuk Moon , Min-Sik Park , Jung Ho Kim

Energy Materials ›› 2023, Vol. 3 ›› Issue (1) : 300005

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (1) :300005 DOI: 10.20517/energymater.2022.65
Mini Review

Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries

Author information +
History +
PDF

Abstract

With the fullness of time, metallic lithium (Li) as an anode could become highly promising for high-energy-density batteries. Theoretically, using Li metal as the negative electrode can result in higher theoretical capacity and lower oxidation voltage and density than in current commercially available batteries. During the charge/discharge process, however, metallic Li shows unavoidable drawbacks, such as dendritic growth, causing capacity degradation and a solid electrolyte interphase (SEI) layer derived from the side reactions between the Li metal anode and the electrolyte, resulting in depletion of the electrolyte. The formation of a suitable SEI is crucial to avoid the side reactions at the interface by circumventing direct contact. Unavoidable dendritic growth at the Li metal anode can be controlled by its ionic conductivity. Furthermore, the SEI is also required as a mechanical reinforcement for withstanding the volume change and suppressing dendritic growth in the Li metal anode. A limiting factor due to complex SEI formation must be considered from the perspectives of chemical and mechanical properties. To further enhance the cycling performance of Li metal batteries, an in-depth understanding of the SEI needs to be achieved to clarify these issues. In this mini review, we focus on the SEI, which consists of various deposited components, and discuss its ionic conductivity and mechanical strength for applications in electric vehicles.

Keywords

Electrolyte additive / ionic conductivity / lithium dendrite / lithium metal battery / solid electrolyte interphase (SEI) / solid electrolyte

Cite this article

Download citation ▾
Seongsoo Park, Rashma Chaudhary, Sang A Han, Hamzeh Qutaish, Janghyuk Moon, Min-Sik Park, Jung Ho Kim. Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries. Energy Materials, 2023, 3(1): 300005 DOI:10.20517/energymater.2022.65

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim JH.Grand challenges and opportunities in batteries and electrochemistry.Front Batter Electrochem2022;1:1066276

[2]

Chang H,Han X.Recent developments in advanced anode materials for lithium-ion batteries.Energy Mater2021;1:100003

[3]

Yang Y,Huang G,Sun W.On the sustainability of lithium ion battery industry - A review and perspective.Energy Stor Mater2021;36:186-212

[4]

Lee J,Han SA.Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery.ACS Nano2019;13:9607-19

[5]

Bi Z.Solidification for solid-state lithium batteries with high energy density and long cycle life.Energy Mater2022;2:200011

[6]

Kitsche D,Ma Y.High performance all-solid-state batteries with a Ni-rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte.ACS Appl Energy Mater2021;4:7338-45

[7]

Jungjohann KL,Goriparti S.Cryogenic laser ablation reveals short-circuit mechanism in lithium metal batteries.ACS Appl Energy Mater2021;6:2138-44

[8]

Xiao Y,Xu L,Huang JQ.Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries.Energy Mater2021;1:100013

[9]

Soto FA,ElMellouhi F.Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations.Chem Mater2018;30:3315-22

[10]

Ramasubramanian A,Foroozan T,Shahbazian-yassar R.Stability of solid-electrolyte interphase (SEI) on the lithium metal surface in lithium metal batteries (LMBs).ACS Appl Energy Mater2020;3:10560-67

[11]

Hu Z,Dong S.Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes.Chem Mater2017;29:4682-89

[12]

Schwager P,Plettenberg I.Review of local in situ probing techniques for the interfaces of lithium-ion and lithium-oxygen batteries.Energy Technol2017;4:1472-85

[13]

Liu T,Bi X.In situ quantification of interphasial chemistry in Li-ion battery.Nat Nanotechnol2019;14:50

[14]

Diddens D,Marbrouk Y,Vegge T.Modeling the solid electrolyte interphase: machine learning as a game changer?.Adv Mater Interfaces2022;9:2101734

[15]

Lee HJ,Lee KJ.Crack healing mechanism by application of stack pressure to the carbon-based composite anode of an all-solid-state battery.ACS Appl Energy Mater2022;5:5227-35

[16]

Liu L.Phase-field modeling of solid electrolyte interphase (SEI) evolution: considering cracking and dissolution during battery cycling.ECS Trans2018;85:1041-51

[17]

Chen L,Ji X,Hou S.High-energy Li metal battery with lithiated host.Joule2019;3:732-44

[18]

Kang D,Moon J.AgNO3-preplanted Li metal powder electrode: preliminary formation of lithiophilic Ag and a Li3N-rich solid electrolyte interphase.Chem Eng J2023;452:139409

[19]

Kang DW,Choi HY,Kim BG.Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content.J Power Sources2021;490:229504

[20]

Choi SH,Shin HR.Critical role of surface craters for improving the reversibility of Li metal storage in porous carbon frameworks.Nano Energy2021;88:106243

[21]

Lee J,Qutaish H.Structurally stabilized lithium-metal anode via surface chemistry engineering.Energy Stor Mater2021;37:315-24

[22]

Kim J,Yun J.Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode.Adv Funct Mater2020;30:1910538

[23]

Qutaish H,Han SA,Park MS.Regulation of ionic conductivity and lithium affinity of porous carbon framework in Li metal batteries through oxidized nitrogen groups.Appl Surf Sci2022;605:154757

[24]

Yang T,Qian T.Lithium dendrite inhibition via 3D porous lithium metal anode accompanied by inherent SEI layer.Energy Stor Mater2020;26:385-90

[25]

An D.Film formation on lithium anode in propylene carbonate.J Electrochem Soc1970;117:C248-&

[26]

Peled E.The Electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model.J Electrochem Soc1979;126:2047-51

[27]

An SJ,Daniel C,Nagpure S.The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling.Carbon2016;105:57-76

[28]

Spotte-Smith EWC,Barter D.Toward a mechanistic model of solid-electrolyte interphase formation and evolution in lithium-ion batteries.ACS Energy Lett2022;7:1446-1453

[29]

Sun SY,Jin CB.The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase.Angew Chem Int Ed2022;61:e202208743

[30]

Bedrov D,Hooper JB.Li+ transport and mechanical properties of model solid electrolyte interphases (SEI): insight from atomistic molecular dynamics simulations.J Phys Chem C2017;121:16098-109

[31]

Yu Q,Yu C.Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries.Chin Chem Lett2021;32:2659-78

[32]

Wu M,Liu X,Ma J.Perspective on solid-electrolyte interphase regulation for lithium metal batteries.SmartMat2021;2:5-11

[33]

Liu G.A Model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth.J Electrochem Soc2017;164:A1826-33

[34]

Li C,Chen Z,Bai F.Hybrid diluents enable localized high-concentration electrolyte with balanced performance for high-voltage lithium-metal batteries.Chin Chem Lett2022;107852

[35]

Xie J,Chen X.Fluorinating the Solid electrolyte interphase by rational molecular design for practical lithium-metal batteries.Angew Chem Int Ed2022;61:e202204776

[36]

Ma X,Chen X.The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes.Small Struct2022;3:2200071

[37]

Vu TT,Kim JH.Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its accurate prediction.J Mater Chem A2021;9:22833-41

[38]

Wang X,Hong L.Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates.Nat Energy2018;3:227-35

[39]

Hao F,Mukherjee PP.Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes.J Mater Chem A2018;6:19664-74

[40]

Pathak R,Gurung A.Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition.Nat Commun2020;11:93

[41]

Cheng X,Zhang X,Zhang Q.Electronic and ionic channels in working interfaces of lithium metal anodes.ACS Energy Lett2018;3:1564-70

[42]

Hou Z,Wang W,Li B.Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases.J Energy Chem2020;45:7-17

[43]

Momma T,Mukoyama D.Ac impedance analysis of lithium ion battery under temperature control.J Power Sources2012;216:304-7

[44]

Han B,Li S.Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries.Nano Lett2020;20:4029-37

[45]

Liu L.Modeling of SEI layer growth and electrochemical impedance spectroscopy response using a thermal-electrochemical model of Li-ion batteries.ECS Trans2014;61:43-61

[46]

Vadhva P,Johnson M.Electrochemical impedance spectroscopy for all-solid-state batteries: theory, methods and future outlook.ChemElectroChem2021;8:1930-47

[47]

Peled E.Review SEI: past, present and future.J Electrochem Soc2018;164:A1703-19

[48]

Kang DW,Choi HJ.One-dimensional porous Li-confinable hosts for high-rate and stable li-metal batteries.ACS Nano2022;16:11892-901

[49]

Wenzel S,Dietrich C,Janek J.Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal anodes.Solid State Ion2018;318:102-12

[50]

Guo R.Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium.Chem Mater2020;32:5525-33

[51]

Li C,Gu L,Maier J.Ionic space-charge depletion in lithium fluoride thin films on sapphire (0001) substrates.Adv Funct Mater2011;21:2901-05

[52]

Pan J,Xiao X,Qi Y.Design of nanostructured heterogeneous solid ionic coatings through a multiscale defect model.ACS Appl Mater Interfaces2016;8:5687-93

[53]

Lorger S,Maier J.Transport and charge carrier chemistry in lithium oxide.J Electrochem Soc2019;166:A2215-20

[54]

Muralidharan A,Pratt LR.Molecular dynamics of lithium ion transport in a model solid electrolyte interphase.Sci Rep2018;8:10736

[55]

Li W,Araújo CM.Li+ ion conductivity and diffusion mechanism in a-Li3N and b-Li3N.Energy Environ Sci2010;3:1524-30

[56]

Liu Y,Zhang D.Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries.Adv Mater2021;33:2004711

[57]

Chen C,Wang G,Xiong X.Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes.Adv Funct Mater2021;32:2107249

[58]

Miyakawa S,Tanibata N.Computational studies on defect chemistry and Li-ion conductivity of spinel-type LiAl5O8 as coating material for Li-metal electrode.Sci Rep2022;12:16672

[59]

Wang R,Liu F.Sulfonated poly(vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode.Electrochim Acta2022;406:139840

[60]

Luo Z,Yang L.Interfacially redistributed charge for robust lithium metal anode.Nano Energy2021;87:106212

[61]

Hu A,Du X.An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode.Energy Environ Sci2021;14:4115-24

[62]

Wang Z,Zhang Z.Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes.Adv Funct Mater2020;30:2002414

[63]

Chen H,Lin D.Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode.Adv Energy Mater2019;9:1900858

[64]

Hu J,Li C.Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode.ACS Appl Mater Interfaces2018;10:34322-31

[65]

Wang Y,Fan G.Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes.J Am Chem Soc2021;143:2829-37

[66]

Li J,Nanda J.Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes.ACS Appl Mater Interfaces2014;6:10083-88

[67]

Han SA,Park MS,Kim JH.Strategic approaches to the dendritic growth and interfacial reaction of lithium metal anode.Chem Asian J2021;16:4010-17

[68]

Yan C,Chen X.Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries.Angew Chem Int Ed2018;57:14055-59

[69]

Liu YY,Li YZ.Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode.Nat Commun2018;9:3656

[70]

Brown ZL,Lucht BL.Using triethyl phosphate to increase the solubility of LiNO3 in carbonate electrolytes for improving the performance of the lithium metal anode.J Electrochem Soc2019;166:A2523-27

[71]

Guo Y,Zeng J.Li2CO3: insights into its blocking effect on Li-ion transfer in garnet composite electrolytes.ACS Appl Energy Mater2022;5:2853-61

[72]

Camacho-Forero LE.Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface.J Power Sources2018;396:782-90

[73]

Lorger S,Usiskin R.Enhanced ion transport in Li2O and Li2S films.Chem Commun2021;57:6503-06

[74]

Aurbach D,Elazari R,Kelley CS.On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries.J Electrochem Soc2009;156:A694-A702

[75]

Li W,Yan K.The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth.Nat Commun2015;6:7436

[76]

Sun Y,Adair KR.Regulated lithium plating and stripping by a nano-scale gradient inorganic organic coating for stable lithium metal anodes.Energy Environ Sci2021;14:4085-94

[77]

Yan C,Tian Y.Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition.Adv Mater2018;30:1707629

[78]

Yuan S,Wang F.Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition.Nano Energy2021;83:105847

[79]

Frenck L,Maslyn JA.Factors that control the formation of dendrites and other morphologies on lithium metal anodes.Front Energy Res2019;7:115

[80]

Liu Y,Kapitanova OO.Electro-Chemo-Mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes.Adv Energy Mater2022;12:2103589

[81]

Han SA,Lee JW,Kim JH.Metal-organic framework derived porous structures towards lithium rechargeable batteries.EcoMat2022;5:e12283

[82]

Zheng F,Song S,Lu L.Review on solid electrolytes for all-solid-state lithium-ion batteries.J Power Sources2018;389:198-213

[83]

Lee D,Kim SY.Critical role of zeolites as H2S scavengers in argyrodite Li6PS5Cl solid electrolytes for all-solid-state batteries.J Mater Chem A2021;9:17311-16

PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

/