Recent progress of multilayer polymer electrolytes for lithium batteries

Nan Zhang , Shaoping Wu , Hongpeng Zheng , Guoyao Li , Hezhou Liu , Huanan Duan

Energy Materials ›› 2023, Vol. 3 ›› Issue (1) : 300009

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (1) :300009 DOI: 10.20517/energymater.2022.64
Review

Recent progress of multilayer polymer electrolytes for lithium batteries

Author information +
History +
PDF

Abstract

The significant market for electric vehicles and portable electronic devices is driving the development of high-energy-density solid-state lithium batteries. However, the solid electrolyte is still the main obstacle to the development of solid-state lithium batteries, mainly due to the lack of a single solid electrolyte that is compatible with both high-voltage cathodes and lithium metal anodes. These problems can potentially be solved with multilayer electrolytes. The property of each layer of the electrolyte can be tuned separately, which not only meets the different needs of the cathode and anode but also makes up for the shortcomings of each layer of the electrolyte, thereby achieving good mechanical properties and chemical and electrochemical stability. This review first presents a brief introduction to homogeneous single-layer electrolytes. The design principles of multilayer polymer electrolytes and the application of these principles using examples from recent work are then introduced. Finally, several suggestions as guides for future work are given.

Keywords

Solid-state lithium batteries / solid electrolytes / multilayer polymer electrolytes / high energy density

Cite this article

Download citation ▾
Nan Zhang, Shaoping Wu, Hongpeng Zheng, Guoyao Li, Hezhou Liu, Huanan Duan. Recent progress of multilayer polymer electrolytes for lithium batteries. Energy Materials, 2023, 3(1): 300009 DOI:10.20517/energymater.2022.64

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M.Building better batteries.Nature2008;451:652-7

[2]

Janek J.A solid future for battery development.Nat Energy2016;1:16141

[3]

Zheng H,Liu J.A rational design of garnet-type Li7La3Zr2O12 with ultrahigh moisture stability.Energy Stor Mater2022;49:278-90

[4]

Zou C,Luo K.In situ formed protective layer: toward a more stable interface between the lithium metal anode and Li6PS5Cl solid electrolyte.ACS Appl Energy Mater2022;5:8428-36

[5]

Zhou D,Tkacheva A,Wang G.Polymer electrolytes for lithium-based batteries: advances and prospects.Chem2019;5:2326-52

[6]

Wright PV.Developments in polymer electrolytes for lithium batteries.MRS Bull2002;27:597-602

[7]

Fenton D,Wright P.Complexes of alkali metal ions with poly(ethylene oxide).Polymer1973;14:589

[8]

Feuillade G.Ion-conductive macromolecular gels and membranes for solid lithium cells.J Appl Electrochem1975;5:63-9

[9]

Quartarone E.Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives.Chem Soc Rev2011;40:2525-40

[10]

Zou C,Zang Z.LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 and chlorine-rich argyrodite enabling high-performance all-solid-state lithium batteries at suitable stack pressure.Ceram Int2023;49:443-9

[11]

Aldissi M.Multi-layered polymer electrolytes towards interfacial stability in lithium ion batteries.J Power Sources2001;94:219-24

[12]

Zhou W,Xie X.Research progress of polymer electrolyte for solid state lithium batteries.Energy Stor Sci Technol2022;11:1788-805

[13]

Wang H,He J.Pseudo-concentrated electrolytes for lithium metal batteries.eScience2022;2:557-65

[14]

Ko D,Kyung D.Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2017074116 [Last accessed on 7 Feb 2023]Polymer electrolyte having multi-layer structure, and all-solid battery comprising same.

[15]

Zheng X,Wang X.Cellulose-reinforced poly(cyclocarbonate-ether)-based composite polymer electrolyte and facile gel interfacial modification for solid-state lithium-ion batteries.Chem Eng J2022;446:137194

[16]

Li X,Fullerton WR.Multilayered solid polymer electrolytes with sacrificial coating for suppressing lithium dendrite growth.ACS Appl Mater Interfaces2022;14:484-91

[17]

Tao X,Liu W.Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Lett2017;17:2967-72

[18]

Zhang Y,Cong L.Cross-linking network based on Poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery.J Power Sources2019;420:63-72

[19]

Yang L,Feng Y.Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries.Adv Energy Mater2017;7:1701437

[20]

Kimura K,Hassoun J,Scrosati B.A quaternaryPoly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl)imide-Ionic liquid-silica fiber composite polymer electrolyte for lithium batteries.Electrochim Acta2015;175:134-40

[21]

Kimura K,Tominaga Y.A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature.Electrochem Commun2016;66:46-8

[22]

Chai J,Ma J.In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries.Adv Sci2017;4:1600377 PMCID:PMC5323859

[23]

Mindemark J,Bowden T.Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes.Prog Polym Sci2018;81:114-43

[24]

Arrese-igor M,Pavlenko E.Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes.ACS Energy Lett2022;7:1473-80

[25]

Mindemark J,Sun B.Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries.Polymer2015;63:91-8

[26]

Wu S,Tian R,Liu H.In-situ preparation of gel polymer electrolyte with glass fiber membrane for lithium batteries.J Power Sources2020;472:228627

[27]

Guo Y,Li D,Zhai T.PMMA-assisted Li deposition towards 3D continuous dendrite-free lithium anode.Energy Stor Mater2019;16:203-11

[28]

Rao M,Li W,Zhou D.Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application.J Membr Sci2008;322:314-9

[29]

Liang Y,Xia Y.A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries.Mater Res Bull2018;102:412-7

[30]

Jie J,Cong L.High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery.J Energy Chem2020;49:80-8

[31]

Wang Y.Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes.Electrochim Acta2007;52:3181-9

[32]

Duan H,Chen WP.Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries.Adv Mater2019;31:e1807789

[33]

Liu Y,Sun C.Enabling stable interphases via in situ two-step synthetic bilayer polymer electrolyte for solid-state lithium metal batteries.Inorganics2022;10:42

[34]

Stoševski I,Vokić N,Popović ZK.Improved Poly(vinyl alcohol) (PVA) based matrix as a potential solid electrolyte for electrochemical energy conversion devices, obtained by gamma irradiation.Energy2015;90:595-604

[35]

Hirankumar G.Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes.Heliyon2018;4:e00992

[36]

York SS,Frech R.Ion-polymer and Ion-ion interactions in linear poly(ethylenimine) complexed with LiCF3SO3 and LiSbF6.Macromolecules2004;37:994-9

[37]

Zhang J,Zhang M.Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide.Nano Energy2016;28:447-54

[38]

Wan Z,Yang W.Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder.Adv Funct Mater2019;29:1805301

[39]

Yue H,Wang Q.Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries.ACS Sustain Chem Eng2018;6:268-74

[40]

Zhang X,Zhang S.Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes.J Am Chem Soc2017;139:13779-85

[41]

Chowdhury FI,Amin YM,Woo HJ.Vibrational, electrical, and structural properties of PVDF-LiBOB solid polymer electrolyte with high electrochemical potential window.Ionics2017;23:275-84

[42]

Zhang X,Lin Y,Li L.Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes.Solid State Ion2018;327:32-8

[43]

Sadiq M,Hasan Raza MM,Zulfequar M.Enhancement of electrochemical stability window and electrical properties of CNT-based PVA-PEG polymer blend composites.ACS Omega2022;7:40116-31

[44]

Wu G,Yang C.Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes.J Membr Sci2006;275:127-33

[45]

Pan J,Wang N,Dou S.Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes.Energy Environ Sci2022;15:2753-75

[46]

Sengwa R.Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes.Electrochim Acta2020;338:135890

[47]

Li J,Yao H,Liu J.Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane.ChemSusChem2014;7:1901-8

[48]

Xu K.Electrolytes and interphases in Li-ion batteries and beyond.Chem Rev2014;114:11503-618

[49]

Hou W.The effect of different lithium salts on conductivity of comb-like polymer electrolyte with chelating functional group.Electrochim Acta2003;48:679-90

[50]

Lee MJ,Lee K.Elastomeric electrolytes for high-energy solid-state lithium batteries.Nature2022;601:217-22

[51]

Huo H,Sun J,Li Y.Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery.J Power Sources2017;372:1-7

[52]

Chen L,Li S,Nan C.PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”.Nano Energy2018;46:176-84

[53]

Ma J,Chen B.A strategy to make high voltage LiCoO2 compatible with Polyethylene oxide electrolyte in all-solid-state lithium ion batteries.J Electrochem Soc2017;164:A3454-61

[54]

Marchiori CFN,Ebadi M,Araujo CM.Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts.Chem Mater2020;32:7237-46

[55]

Zhang X,Zhou L,Min Y.Surface-modified boron nitride as a filler to achieve high thermal stability of polymer solid-state lithium-metal batteries.J Mater Chem A2021;9:20530-43

[56]

Pan J,Wang J.A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state batteries.Adv Mater2022;34:e2107183

[57]

Pan X,Wang Z.High voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-Metal/NMC622 batteries.Adv Energy Mater2020;10:2002416

[58]

Wang P,Zhang Z.An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries.J Mater Chem A2019;7:5295-304

[59]

Zheng H,Ouyang R.Origin of lithiophilicity of lithium garnets: compositing or cleaning?.Adv Funct Mater2022;32:2205778

[60]

Duan H,Shi Y.Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers.J Am Chem Soc2018;140:82-5

[61]

Monroe C.The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces.J Electrochem Soc2005;152:A396

[62]

Zhang X,Liu X.Dendrites in lithium metal anodes: suppression, regulation, and elimination.ACC Chem Res2019;52:3223-32

[63]

Zhou W,Pu Y.Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries.Adv Mater2019;31:e1805574

[64]

Stone GM,Teran AA.Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries.J Electrochem Soc2012;159:A222-7

[65]

Sångeland C,Mindemark J.Overcoming the obstacle of polymer-polymer resistances in double layer solid polymer electrolytes.J Phys Chem Lett2021;12:2809-14 PMCID:PMC8006132

[66]

Deng C,Hou C,Zhou Z.Enhancing interfacial contact in solid-state batteries with a gradient composite solid electrolyte.Small2021;17:e2006578

[67]

Yao Z,Li X.Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-metal batteries.ACS Appl Mater Interfaces2021;13:11958-67

[68]

Arrese-igor M,López del Amo JM.Enabling double layer polymer electrolyte batteries: Overcoming the Li-salt interdiffusion.Energy Stor Mater2022;45:578-85

[69]

Li F,He J.Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis.Angew Chem Int Ed2022;61:e202205091

[70]

Wang C,Wang L.Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery.Adv Sci2019;6:1901036 PMCID:PMC6865005

[71]

Li L,Zhang L,Deng Y.Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance.Energy Stor Mater2022;45:1062-73

[72]

Wang C,Liu X.Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries.ACS Appl Mater Interfaces2017;9:13694-702

[73]

Bi Z,Zhao N,Huang W.Cathode supported solid lithium batteries enabling high energy density and stable cyclability.Energy Stor Mater2021;35:512-9

[74]

Yang S,Shen L.Gravity-driven Poly(ethylene glycol)@Li1.5Al0.5Ge1.5(PO4)3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries.J Power Sources2022;518:230756

[75]

Gai J,Zhang Z.Flexible organic-inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state li-ion batteries.ACS Sustain Chem Eng2019;7:15896-903

[76]

Wang Q,Liu Y,Liu W.An asymmetric quasi-solid electrolyte for high-performance Li metal batteries.Chem Commun2020;56:7195-8

[77]

Cai D,Xiang J.A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery.Chem Eng J2022;435:135030

[78]

Zhao C,Yan C.Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review.Energy Stor Mater2020;24:75-84

[79]

Wu N,Dolocan A.In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface.Adv Funct Mater2020;30:2000831

[80]

Luo Y,Zhang Y,Chen H.Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries.Electrochim Acta2019;294:217-25

[81]

Yuan C,Xu J.Heterogeneous reinforcements to mitigate Li penetration through solid electrolytes in all-solid-state batteries.Adv Energy Mater2022;12:2201804

[82]

Doan Tran H,Chen L.Machine-learning predictions of polymer properties with Polymer Genome.J Appl Phys2020;128:171104

[83]

Liu M,Liu K,Sparks TD.A data science approach for advanced solid polymer electrolyte design.Comput Mater Sci2021;187:110108

[84]

Li Z,Liu G.Group contribution method for estimation internal pressure and new solubility parameter for polymers.J Chem Ind Eng2002;53:6

PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

/