Design of highly conductive iongel soft solid electrolytes for Li-O2 batteries

Marta Alvarez-Tirado , Laurent Castro , Gregorio Guzmán-González , Aurélie Guéguen , Liliana C. Tomé , David Mecerreyes

Energy Materials ›› 2023, Vol. 3 ›› Issue (1) : 300003

PDF
Energy Materials ›› 2023, Vol. 3 ›› Issue (1) :300003 DOI: 10.20517/energymater.2022.59
Article

Design of highly conductive iongel soft solid electrolytes for Li-O2 batteries

Author information +
History +
PDF

Abstract

Li-O2 batteries show high energy storage potential, but there remain many material challenges that must be solved to fully develop them into a robust technology. The reactivity of the electrolyte against lithium metal as the anode or with oxygen superoxide radicals in the cathode is the main problem that may be alleviated by the use of ionic liquids and solid electrolytes. In this work, iongel solid flexible electrolytes with facile preparation are designed based on five variations of the successful N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide ionic liquid. These iongels show an outstanding ionic conductivity of 7.8 × 10-3 S·cm-1 at 25 °C, excellent performance against lithium metal and reduced dendritic growth, even at a high current density rate of 2 mA·cm-2. Tests on Li-O2 cells show a 100% capacity retention for 25 cycles with limited capacity. Hence, this work provides a plausible pathway to tackle the design of effective lithium protection methods and efficient solid electrolytes for Li-O2 batteries.

Keywords

Polymer electrolytes / iongels / ionic liquids / Li-O2 batteries / lithium metal batteries / solid-state batteries

Cite this article

Download citation ▾
Marta Alvarez-Tirado, Laurent Castro, Gregorio Guzmán-González, Aurélie Guéguen, Liliana C. Tomé, David Mecerreyes. Design of highly conductive iongel soft solid electrolytes for Li-O2 batteries. Energy Materials, 2023, 3(1): 300003 DOI:10.20517/energymater.2022.59

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma L,Tzoganakis E.Fundamental understanding and material challenges in rechargeable nonaqueous Li-O2 batteries: recent progress and perspective.Adv Energy Mater2018;8:1800348

[2]

Grande L,Hassoun J.The lithium/air battery: still an emerging system or a practical reality?.Adv Mater2015;27:784-800

[3]

Liu DH,Li M.Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives.Chem Soc Rev2020;49:5407-45

[4]

Chen J,Lin K,Cheng Y.Building a stable artificial solid electrolyte interphase on lithium metal anodes toward long-life Li-O2 batteries.J Power Sources2022;540:231603

[5]

Wang D,He P.Materials for advanced Li-O2 batteries: explorations, challenges and prospects.Mater Today2019;26:87-99

[6]

Zhou D,Tkacheva A,Wang G.Polymer electrolytes for lithium-based batteries: advances and prospects.Chem2019;5:2326-52

[7]

Wang Q,Wu J,Liu W.Advanced electrolyte design for stable lithium metal anode: from liquid to solid.Nano Energy2021;80:105516

[8]

Liu K,Shi L,Yuan S.Ionic liquids for high performance lithium metal batteries.J Energy Chem2021;59:320-33

[9]

Stettner T.Protic ionic liquids in energy storage devices: past, present and future perspective.Energy Stor Mater2021;40:402-14

[10]

Long L,Xiao M.Polymer electrolytes for lithium polymer batteries.J Mater Chem A2016;4:10038-69

[11]

Knipping E,Guirado G.Room temperature ionic liquids versus organic solvents as lithium-oxygen battery electrolytes.New J Chem2018;42:4693-9

[12]

Yang Q,Sun XG,Xing H.Ionic liquids and derived materials for lithium and sodium batteries.Chem Soc Rev2018;47:2020-64

[13]

Nakamoto H,Shiotsuki T.Ether-functionalized ionic liquid electrolytes for lithium-air batteries.J Power Sources2013;243:19-23

[14]

Osada I,Scrosati B.Ionic-liquid-based polymer electrolytes for battery applications.Angew Chem Int Ed2016;55:500-13

[15]

Ulissi U,Jeong S.Low-polarization lithium-oxygen battery using [DEME][TFSI] ionic liquid electrolyte.ChemSusChem2018;11:229-36

[16]

Alvarez-tirado M,Guéguen A.Iongel soft solid electrolytes based on [DEME][TFSI] Ionic liquid for low polarization lithium-O2 batteries.Batteries Supercaps2022;5:e202200049

[17]

Vanhoutte G,Bardé F,Fransaer J.Fluorine-functionalized ionic liquids with high oxygen solubility.RSC Adv2018;8:4525-30 PMCID:PMC9077791

[18]

Li D,Shen Z.3D hexapod-shaped Co-ZIFs-S derived co nanoparticles embedded into nitrogen and sulfur co-doped carbon decorated with ruthenium nanoparticles as efficient catalyst for rechargeable lithium oxygen battery.Nano Energy2022;91:106644

[19]

Liu Y,Zhou J.Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li-O2 batteries.eScience2022;2:389-98

[20]

Kwak WJ,Sharon D.Lithium-oxygen batteries and related systems: potential, status, and future.Chem Rev2020;120:6626-83

[21]

Tomé LC,Bara JE,Mecerreyes D.Emerging iongel materials towards applications in energy and bioelectronics.Mater Horiz2021;8:3239-65

[22]

Zhao M,Lall-ramnarine SI.Structural analysis of ionic liquids with symmetric and asymmetric fluorinated anions.J Chem Phys2019;151:074504

[23]

Zhao H,Chi Z.Designing a new-type PMMA based gel polymer electrolyte incorporating ionic liquid for lithium oxygen batteries with Ru-based Binder-free cathode.Appl Surf Sci2021;565:150612

[24]

Jung KN,Jung JH,Lee JW.A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid.Chem Commun2014;50:5458-61

[25]

Pan J,Sun H.A lithium-air battery stably working at high temperature with high rate performance.Small2018;14:1703454

[26]

Amanchukwu CV,Gauthier M,Batcho TP.One-electron mechanism in a gel-polymer electrolyte Li-O2 battery.Chem Mater2016;28:7167-77

[27]

Gouveia ASL,Lozinskaya EI,Vygodskii YS.Exploring the effect of fluorinated anions on the CO2/N2 separation of supported ionic liquid membranes.Phys Chem Chem Phys2017;19:28876-84

[28]

Costa AJ,Shimizu K.Density, thermal expansion and viscosity of cholinium-derived ionic liquids.Chemphyschem2012;13:1902-9

[29]

Rajkumar T.Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid.Mater Chem Phys2008;112:853-7

[30]

Paschoal VH,Ribeiro MCC.Vibrational spectroscopy of ionic liquids.Chem Rev2017;117:7053-112

[31]

Gao X,Mariani A.Concentrated ionic-liquid-based electrolytes for high-voltage lithium batteries with improved performance at room temperature.ChemSusChem2019;12:4185-93 PMCID:PMC6852532

[32]

Pal P.Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and viscosity of ionic liquids.J Power Sources2018;406:128-40

[33]

Vijayakumar V,Kurungot S,Nair JR.In situ polymerization process: an essential design tool for lithium polymer batteries.Energy Environ Sci2021;14:2708-88

[34]

Wang J,Fang M,Yamada Y.Concentrated electrolytes widen the operating temperature range of lithium-ion batteries.Adv Sci2021;8:e2101646 PMCID:PMC8456280

[35]

Olmedo-martínez JL,Alegría Á,Müller AJ.High lithium conductivity of miscible poly(ethylene oxide)/methacrylic sulfonamide anionic polyelectrolyte polymer blends.Macromolecules2020;53:4442-53

[36]

Guzmán-gonzález G,Camacho-forero LE.Charge delocalization on BO4- centers to improve conductivity on single lithium ion conducting polymer electrolytes: a computational/experimental approach.J Phys Chem C2019;123:17686-94

[37]

Aziz SB,Kadir M.A conceptual review on polymer electrolytes and ion transport models.J Sci Adv Mater Dev2018;3:1-17

[38]

Singh VK,Balo L,Singh SK.Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries.J Solid State Electrochem2017;21:1713-23

[39]

Cai Y,Lu Y,Ni Y.An ionic liquid electrolyte with enhanced Li+ transport ability enables stable li deposition for high-performance Li-O2 Batteries.Angew Chem Int Ed2021;60:25973-80

[40]

Tong J,von Solms N.The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes.Front Chem2019;7:945 PMCID:PMC7010713

[41]

Bennington P,Sharon D.Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes.J Mater Chem A2021;9:9937-51

[42]

Periyapperuma K,Harvey S.Towards high rate Li metal anodes: enhanced performance at high current density in a superconcentrated ionic liquid.J Mater Chem A2020;8:3574-9

[43]

Eshetu GG,Forsyth M,Armand M.Polymeric ionic liquids for lithium-based rechargeable batteries.Mol Syst Des Eng2019;4:294-309

[44]

Karuppasamy K,Vikraman D.Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications.Polymers2020;12:918 PMCID:PMC7240671

[45]

Ray A.Application of ionic liquids for batteries and supercapacitors.Materials2021;14:2942 PMCID:PMC8197857

[46]

Chen Z,Kim J.Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer.Adv Energy Mater2021;11:2101339

[47]

Kang D,Xiao M.Lemmon J. Short circuit of symmetrical li/li cell in li metal anode research.Acta Physico Chimica Sinica2021;37:1-6

[48]

Peled E.Review-SEI: past, present and future.J Electrochem Soc2017;164:A1703-19

[49]

Wang A,Li H,Qi Y.Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries.NPJ Comput Mater2018;4

[50]

Rakov DA,Ferdousi SA.Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes.Nat Mater2020;19:1096-101

[51]

Frenck L. Study of a buffer layer based on block copolymer electrolytes, between the lithium metal and a ceramic electrolyte for aqueous lithium-air battery. Grenoble, France: Universite Grenoble Alpes, 2016.

PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

/